Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search

The efficiency assessment of an automatic sprinkler system

https://doi.org/10.22227/PVB.2021.30.01.42-53

Abstract

Introduction. Сases of ineffective activation of automatic sprinkler fire-fighting systems (AFFS), designed pursuant to current standards, have made it necessary to address the following three issues: a) identification of reasons for ineffective activation; b) examination of AFFS systems to ensure their successful activation in case of fire; c) making a list of recommendations for AFFS designers. These issues can be resolved with reference to Appendix B to new SP (Construction Regulations) 485.13130.2020.

Maximal critical height of sprinkler placement. Models of fire development were used to design the roof height limit and the AFFS bulb heating time. If the ceiling height exceeds the limit value, sprinklers cannot be activated in a timely manner. This leads to delays in the AFFS activation, and, as a result, the fire area exceeds the one safeguarded by the sprinkler.

Acceptable sprinkler height. The analysis of fire scenarios and bulb heating models allows to more accurately project the feasibility of timely AFFS activation. This, in turn, allows to solve the three above listed problems.

Using a differential heat detector to activate sprinklers. If it is established that the use of the AFFS, activating sprinklers by means of thermal destruction of a bulb, is ineffective in a given room, the feasibility of forced AFFS activation using a differential heat detector responding to the temperature rise in a room may be considered. The ratios, thus obtained, are applied to identify the acceptable height of premises protected by the AFFS equipped with such detectors. Problem solutions, including the identification of the reason for the ineffective operation of the AFFS, examination of the AFFS in operation, and provision of recommendations to designers, are demonstrated using the exhibition hall as an example.

Conclusions. The above-mentioned problems are resolvable with the help of Appendix B to new Construction Regulations 485.13130.2020 and the above models.

About the Authors

L. T. Tanklevskiy
Peter the Great Saint Petersburg Polytechnic University; Saint-Petersburg University of State Fire Service of the Ministry of the Russian Federation for Civil Defense, Emergencies and Elimination on Consequences of Natural Disasters
Russian Federation

Leonid T. Tanklevskiy, Dr. Sci. (Eng.), Professor, Head of Department of Higher School of Technosphere Safety, Peter the Great Saint Petersburg Polytechnic University; Chief researcher, Saint-Petersburg University of State Fire Service of the Ministry of the Russian Federation for Civil Defense, Emergencies and Elimination on Consequences of Natural Disasters; ID RISC: 181476; Scopus Author ID: 57192367552; ResearcherID: S-1901-2017

Polytechnicheskaya St., 29, Saint Petersburg, 195251
Moskovskiy Avenue, 149, Saint Petersburg, 196105 



A. A. Tarantsev
Saint-Petersburg University of State Fire Service of the Ministry of the Russian Federation for Civil Defense, Emergencies and Elimination on Consequences of Natural Disasters; Solomenko Institute of Transport Problems of the Russian Academy of Science
Russian Federation

Alexander A. Tarantsev, Dr. Sci. (Eng.), Professor, Head of Laboratory, Solomenko Institute of Transport Problems of the Russian Academy of Science; Professor, Saint-Petersburg University of State Fire Service of the Ministry of the Russian Federation for Civil Defense, Emergencies and Elimination on Consequences of Natural Disasters; ID RISC: 664653; Scopus Author ID: 57195636448; ResearcherID: K-2087-2018

Moskovskiy Avenue, 149, Saint Petersburg, 196105
12-ya Liniya Vasil’evskogo ostrova, 13, Saint Petersburg, 199178 



O. A. Zybina
Peter the Great Saint Petersburg Polytechnic University
Russian Federation

Olga A. Zybina, Dr. Sci. (Eng.), Assistant Professor of Department of Higher school of Technosphere Safety; ID RISC: 505657; Scopus Author ID: 6504571187; ResearcherID: Q-4451-2017

Polytechnicheskaya St., 29, Saint Petersburg, 195251



I. A. Babikov
Peter the Great Saint Petersburg Polytechnic University
Russian Federation

Igor A. Babikov, Graduate Student of Department of Higher School of Technosphere Safety; ID RISC: 949758; Scopus Author ID: 57205082476; ResearcherID: S-5502-2017

Polytechnicheskaya St., 29, Saint Petersburg, 195251



References

1. Tanklevskiy L.T., Babikov I.A., Tarantsev A.A., Zybina O.A. On a more precise assessment of coordinates of the seat of fire in the premises. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2020; 29(3):33-43. DOI: 10.18322/PVB.2020.29.03.33-43 (rus).

2. Tarantsev A.A., Tanklevskiy L.T., Snegirev A.Yu., Tsoy A.S., Kopylov S.N., Meshman L.M. Assessment of the sprinkler installation efficiency. Fire Safety Journal. 2015; 1:72-79. (rus).

3. Babikov I.A., Tanklevsky A.L., Tarantsev A.A. Determination method of sprinklers with electrical activation in case of internal fire. Risk Management Challenges in the Technosphere. 2019; 3(51):34-41. (rus).

4. Tanklevskiy L., Tsoy A., Snegirev A. Electrically controlled dynamic sprinkler activation computational assessment of potential efficiency. Fire Safety Journal. 2017; 91:614-623. DOI: 10.1016/j.firesaf.2017.04.019

5. Tanklevskiy L., Vasiliev M., Meshman L., Snegirev A., Tsoi A. A novel methodology of electrically controlled sprinkler activation. Proceedings of the 13th International conference Interflam 2013. London, 2013; 503-508.

6. Tsoi A., Snegirev A., Tanklevskiy L., Sheinman I. Flame suppression by water sprays: exploring capabilities and failures of FDS. Proceedings of the Seventh International Seminar Fire and Explosion Hazards. Research Publ., 2013; 482-491. DOI: 10.3850/978-981-07-5936-0_07-05

7. Xin Yibing, Burchesky K., de Vries J., Magistrale H., Zhou X., D’Aniello S. SMART sprinkler protection for highly challenging fires — Part 1: System design and function evaluation. Fire Technology. 2016; 53(5):1847-1884. DOI: 10.1007/s10694-017-0662-2

8. Grudanova O.V., Tarantsev A.A., Koroleva L.A. On the Economic Assessment of the Two Ways of Retrofitting Automatic Fire Extinguishing Units. Risk management challenges in the technosphere. 2007; 1:38-42. (rus).

9. Kopylov S., Tanklevskiy L., Vasilev M., Zima V., Snegirev A. Advantages of electronically controlled sprinklers ECS for fire protection of tunnels. Proceedings from the Fifth International Symposium on Tunnel Safety and Security, New York, USA, March 14-16, 2012. Vol. 1. SP Technical Research Institute of Sweden, 2012; 87-92. URL: https://www.diva-portal.org/smash/get/diva2:962674/FULLTEXT01.pdf#page=88

10. Meshman L.M., Tsarichenko S.G., Bylinkin V.A., Aleshin V.V., Gubin R.Yu. Design of water and foam automatic fire extinguishers / N.P. Kopylov (ed.). Moscow, VNIIPO MCHS RF, 2002; 413. (rus).

11. Sobur S.V. Automatic fire extinguishers : a reference book. 3rd ed., changes. Moscow, Spetstekhnika Publ., 2003; 400. (rus).

12. Safronov V.V., Aksenova E.V. Selection and calculation of fire extinguishing and signalling installations. Orel, OrlGTU, 2004; 57. (rus).

13. Khrapskii S.F., Starikov V.I., Rysev D.V. Production and fire automation. Omsk, OmGTU Publ., 2013; 152. (rus).

14. Voronkov O.Iu. Design, installation and operation of automatic fire extinguishers. Omsk, OmGTU Publ., 2016. (rus).

15. Iliushov N.Ia. Automatic fire extinguishing installations. Novosibirsk, NGTU Publ., 2016; 134. (rus).

16. Alpert R.L. Ceiling jet flows. SFPE Handbook of Fire Protection Engineering. 3rd Ed NFPA. 2002; 2-31.

17. Abrakov D.D., Borodin A.A., Bulatova V.V., Kornilov A.A., Shnaider A.V. Experimental evaluation of sprinklers inertia. Technology of Technosphere Safety. 2013; 1(47). URL: http://agps-2006.narod.ru/ttb/2013-1/03-01-13.ttb.pdf (rus).

18. Vasil’eva M.S., Zorina K.V., Remez A.S. Investigation of the possibility of using aggregate-modular water mist fire extinguishing systems. Safety in emergency situations: collection of scientific papers of the All-Russian scientific and practical conference. Saint Petersburg, SPbPU, 2018:215-219. URL: http://elibrary.ru/item.asp?id=37007468& (rus).

19. Application of a simplified pyrolysis model to predict fire development in rack storage facilities. Journal of Physics: Conference Series. 2018; 1107:042012. DOI: 10.1088/1742-6596/1107/4/042012

20. Markus E., Snegirev A., Kuznetsov E., Tanklevskiy L. Fire growth in a high-rack storage. Proceedings of the Ninth International Seminar on Fire and Explosion Hazards. 21–26 April 2019, Saint Petersburg, Russia. Saint Petersburg, 2019; 796-807. URL: https://elib.spbstu.ru/dl/2/k19-70.pdf/info DOI: 10.18720/spbpu/2/k19-70

21. Drysdale D. An Introduction to Fire Dynamics. Chichester, John Wiley and Sons Publ., 1985; 424.

22. Snegirev A., Tanklevskiу L. The macrokinetics of indoor fire. High Temperature. 1998; 36(5):737-743.

23. Snegirev A., Tanklevskiu L. Numerical simulation of turbulent con-vection of gas indoors in the presence of a source ofignition. High Temperature. 1998; 36(6):949-959.

24. Markus E., Snegirev A., Kuznetsov E., Tanklevskiy L. Application of the thermal pyrolysis model to predict flame spread over continuous and discrete fire load. Fire Safety Journal. 2019. 108:102825. DOI: 10.1016/j.firesaf.2019.102825

25. Markus E.S., Snegirev A.Yu., Kuznetsov E.A., Tanklevskiy L.T., Arakcheev A.V. Simulation of flame spread over discrete fire load. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2019; 28(4):29-41. DOI: 10.18322/PVB.2019.28.04.29-41 (rus).

26. Markus E.S., Kuznetsov E.A., Snegirev A.Yu. Natural buoyant turbulent diffusion flame near a vertical surface. Combustion, Explosion, and Shock Waves. 2018; 54(3):284-293. DOI: 10.15372/FGV20180304 (rus).

27. Snegirev A., Markus E., Kuznetsov E., Harris J., Wu T. On soot and radiation modeling in buoyant turbulent diffusion flames. Heat and Mass Transfer. 2018. 54(8):2275-2293. DOI: 10.1007/s00231017-2198-x (rus).

28. Snegirev A.Yu., Kokovina E.S., Tsoi A.S., Talalov V.A., Stepanov V.V. Integration of models of turbulent flame and pyrolysis of combustible material: combustion of thermoplastics. Proceedings of the XXXI Siberian Thermophysical Seminar. November 17-19, 2014, Novosibirsk. 226-233. (rus).

29. Demidovich B.P., Maron I.A., Shuvalova E.Z. Numerical methods of analysis. 3rd ed., rev. Moscow, Nauka Publ., 1967; 368. (rus).

30. CITIS-SPN-1. Fire load. Directory. 3rd edition dated June 20, 2014. 2014; 51. (rus).


Review

For citations:


Tanklevskiy L.T., Tarantsev A.A., Zybina O.A., Babikov I.A. The efficiency assessment of an automatic sprinkler system. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2021;30(1):42-53. (In Russ.) https://doi.org/10.22227/PVB.2021.30.01.42-53

Views: 1574


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)