Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search

Numerical simulation of a subway car fire

https://doi.org/10.18322/pvb.2017.26.10.27-35.

Abstract

This research thesis presents the simulation of fire growth and flame spread within a car in an underground trainway using Fire Dynamics Simulator (FDS) realizing Computational Fluid Dynamics (CFD) model. The motivation of the study is to predict the heat release rate (HRR) and specifically the peak value for emergency situations. The existing documents don’t contain recommendations for defining these important parameters. Using of several methods of estimating the HRR for a metro train, it appears that the current methods cannot realistically predict the HRR because factors such as the burning behavior of materials; and the train and tunnel geometries that affect the HRR are not considered. This project attempts to incorporate these factors in the FDS model. Modeling was realized on the base of such main research results as: § fire load of subway car series 81-557 and 81-558 (wood equivalent); § burning rate (full scale experiments). A number of assumptions have been made so that to simplify the model. They were: § passenger doors were opened from one side of car; § fire load was spread on car area; § window failure was simulated, at temperature 300 °C window began to fracture and fall off (temperature was controlled by detectors at center of windows); § ignition of material was initiated by point source; § upper plane of the computational domain is defined as “Open”; § calculation was carried out until the fire load was completely burned out. The size of the computational domain was 40 m long by 12 m wide by 6 m high. Two grid sizes, 0.025´0.025´0.025 m (zone of fire load) and 0.25´0.25´0.25 m (zone above fire load) were used. The simulation time specified for simulation was 2500 s. Results of modeling: § HRR-curve: approximation of HRR-curve for engineering calculations (“design fire”); § value of peak HRR - 12.3 MW; § combustion reaction parameters. The results of the study and the obtained dependence of the heat release rate can be applied in the development, justification of parameters, evaluation of the smoke protection systems efficiency and analysis of people safe evacuation conditions in case of fire.

About the Authors

A. I. Danilov
Санкт-Петербургский университет ГПС МЧС России
Russian Federation


V. A. Maslak
ОАО “НИПИИ “Ленметрогипротранс”
Russian Federation


A. V. Vagin
Санкт-Петербургский университет ГПС МЧС России
Russian Federation


I. A. Sivakov
Университет ИТМО
Russian Federation


References

1. Ergebnisbericht zur beurteilung von branden an schienenfahrzeugen als bemessungsbrände zur brandschutztechnischen auslegung von oberirdischen personenverkehrsanlagen der Deutschen Bahn AG.- Frankfurt am Main : Deutsche Bahn AG, DB Station & Service, Fachstelle Brandschutz, September 2000.

2. Bemessungsbrände für s-bahnen und den gemischten reisezugverkehr : anwenderhandbuch.-Köln : STUVA, Juni 2010 [Design fires for urban commuter railway systems and the mixed passenger transport : manual. -Cologne : STUVA, June 2010].

3. Fire in Tunnels. Technical Report - Part 1. Design Fire Scenarios. - Brussels, Belgium, WTCB, 2006. -161 p.

4. Провести исследования и определить требуемые пределы огнестойкости несущих конструкций станций и тоннелей на основании реального температурного режима : отчет о НИР (заключ.) / ЛФ ВНИИПО; руководитель В. П. Беляцкий. -П.Л2.Н.003.89 (разд. 4).-Л., 1990. -87 с.

5. Оценка соответствия вагонов метрополитена моделей 81-556, 81-557 и 81-558 требованиям НПБ 109-96 “Вагоны метрополитена. Требования пожарной безопасности” : заключение № 014-03.13.-СПб. : Санкт-Петербургский филиал ФГБУ ВНИИПО МЧС РФ, 2013. -38 с.

6. Пособие по применению “Методики определения расчетных величин пожарного риска в зданиях, сооружениях и строениях различных классов функциональной пожарной опасности”.-2-е изд., испр. и доп. -М. : ВНИИПО, 2014.-226 с.

7. Корольченко А. Я., Корольченко Д. А. Пожаровзрывоопасность веществ и материалов и средства их тушения : справочник: в 2 ч.-2-е изд., перераб. и доп.-М. : Пожнаука, 2004.-Ч. 1, 713 с.; Ч. 2, 774 с.

8. Программный комплекс Fire Cat. Библиотека реакций и поверхностей горения в PyroSim. - Екатеринбург : ИП Карькин И. Н., 2014. -27 с.

9. Бондарев В. Ф., Лесков А. А. Определение интенсивности тепловыделения при пожаре подвижного состава метрополитена в тоннеле // Борьба с пожарами в метрополитенах : сб. науч. тр.- М. : ВНИИПО МВД РФ, 1992.-С. 62-70.

10. Surface transport master plan. Addendum3-Transit corridor safeguarding. Fire and life safety concept. -Abu Dhabi, UAE : Department of Transport, November 2008. URL: https://www.scribd.com/document/ 320813316/Fire-and-Life-Safety-Concept (дата обращения: 01.08.2017).

11. Ingason H., Gustavsson S., Dahlberg M. Heat release rate measurements in tunnel fires. SP Report 1994:08. -Borеs : Swedish National Testing and Research Institute, 1994. -64 p.

12. Haack A. Real fires and design fires // Proceedings of the Jornada Técnica sobre Fuego en Túneles.- Barcelona, Spain, 5 May 2011.

13. Bo Si Zhang, Shou Xiang Lu. Numerical simulation and analysis of compartment fire in subway train // Applied Mechanics and Materials.-2012.-Vol. 166-169.-P. 2726-2730. DOI: 10.4028/www.scientific. net/AMM.166-169.2726.

14. Li Y. Z., Ingason H. A new methodology of design fires for train carriages based on exponential curve method // Fire Technology. - 2016. - Vol. 52, Issue 5. - P. 1449-1464. DOI: 10.1007/s10694-015-0464-3.


Review

For citations:


Danilov A.I., Maslak V.A., Vagin A.V., Sivakov I.A. Numerical simulation of a subway car fire. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2017;26(10):27-35. (In Russ.) https://doi.org/10.18322/pvb.2017.26.10.27-35.

Views: 628


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)