Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search

On physical basis of local current overload in vehicle electric mains

https://doi.org/10.18322/PVB.2019.28.06.18-28

Abstract

Introduction. The data presented in the article indicate that the problem of improving fire safety of vehicles is very topical. The aim of the article is to develop a scientifically based method for studying a copper conductor with signs of local current overload in order to establish the cause of its damage during a fire-technical examination.

Materials and methods. The studies were carried out with a JSM-6390LV scanning electron microscope with an add-on device for energy dispersive microanalysis. The fracture surfaces of the copper conductor were analyzed without preliminary sample preparation.

Theoretical foundations (theory and calculations). An updated model of ultimate stress-strain state of inelastic pure bending of a copper rod of circular cross section has been developed. The solution has been reduced to simple rating formulas that allow us to evaluate the bearing capacity of flexible single copper conductors. The applicability of the developed mathematical model during the fire-technical examination is shown by a specific example.

Results and discussion. Examples of vehicle fires caused by critical bending of the wiring harness are given in the article. Experimental data confirmed that the copper conductor under current overload melts in the critical bend area. The need to clarify the wording of the term “local current overload” is justified.

Conclusion. A method for determining the critical bending of a copper conductor at which its melting can occur under electric current has been proposed. The data presented in the article can be used by experts in an expert study of copper conductors from fire sites to establish the mechanism of their damage and, ultimately, the cause of a vehicle fire.

About the Authors

A. I. Nedobitkov
D. Serikbayev East Kazakhstan State Technical University
Kazakhstan
Alexandr I. NEDOBITKOV, Cand. Sci. (Eng.), Senior Research, Serikbayeva St., 19, Ust-Kamenogorsk, 070014, Republic of Kazakhstan


B. M. Abdeev
D. Serikbayev East Kazakhstan State Technical University
Kazakhstan
Boris M. ABDEEV, Cand. Sci. (Eng.), Professor, Department Vocational training, Serikbayeva St., 19, Ust-Kamenogorsk, 070014, Republic of Kazakhstan


References

1. N. N. Brushlinskiy, S. V. Sokolov, P. Wagner. Chelovechestvo i pozhary [Humaniti and fires]. Moscow, IPTs Maska Publ., 2007. 142 p. (in Russian).

2. Quintiere J. G. Fundamentals of fire phenomena. — England, Chichester : John Wiley and Sons Ltd., 2006. DOI: 10.1002/0470091150.fmatter.

3. Beyler C., Carpenter D., Dinenno P. Introduction to fire modeling. Fire Protection Handbook. — 20th ed. — Quincy : National Fire Protection Association, 2008.

4. Severy D., Blaisdell D., Kerkhoff J. Automotive collision fires // SAE Technical Paper 741180, 1974. DOI: 10.4271/741180.

5. Katsuhiro Okamoto, Norimichi Watanabe, Yasuaki Hagimoto, Tadaomi Chigira, Ryoji Masano, Hitoshi Miura, Satoshi Ochiai, Hideki Satoh, Yohsuke Tamura, Kimio Hayano, Yasumasa Maeda, Jinji Suzuki. Burning behavior of sedan passenger cars // Fire Safety Journal. — 2009. — Vol. 44, No. 3. — P. 301–310. DOI: 10.1016/j.firesaf.2008.07.001.

6. I. D. Cheshko, S. V. Skodtayev, T. D. Teplyakova. Classification of emergency fire-hazardous operations of electric networks of cars and the scheme of identifying their trails after the fire. Problemy upravleniya riskami v tekhnosfere / Problems of Technosphere Risk Management, 2019, no. 1(49), pp. 107–115 (in Russian).

7. А. I. Bogatishchev. Comprehensive research of fire hazardous modes in mains of electrical equipment of vehicles. Cand. Sci. (Eng.) Diss. Moscow, State Fire Academy of Emercom of Russia Publ., 2002. 269 p. (in Russian).

8. I. D. Cheshko. Ekspertiza pozharov (obyekty, metody, metodiki issledovaniya) [Examination of fire (objects, methods, methods of research)]. Saint Petersburg, Saint Petersburg Institute of Fire Safety of Ministry of the Interior of Russian Federation Publ., 1997. 562 p. (in Russian).

9. I. D. Cheshko, A. Yu. Mokryak, S. V. Skodtaev. Formation mechanism of excess currents passage traces in copper conductors. Vestnik Sankt-Peterburgskogo universiteta Gosudarstvennoy protivopozharnoy sluzhby MChS Rossii / Herald of St. Petersburg University of State Fire Service of Emercom of Russia, 2015, no. 1, pp. 41–46 (in Russian).

10. A. Yu. Mokryak. Determination of the nature of melting of copper conductors and brass current-carrying products in the examination of fires at power facilities. Cand. Sci. (Eng.) Diss. Moscow, State Fire Academy of Emercom of Russia Publ., 2018. 140 p. (in Russian).

11. S. V. Skodtaev. Mechanism and morphological features of emergency fire-dangerous processes in electric networks of cars. Cand. Sci. (Eng.) Diss. Мoscow, State Fire Academy of Emercom of Russia Publ., 2019. 144 p. (in Russian).

12. G. I. Smelkov, I. D. Czeshko, V. G. Plotnikov. Experimental modeling of fire-alarm emergency modes in electrical wires. Vestnik Sankt-Peterburgskogo universiteta Gosudarstvennoy protivopozharnoy sluzhby MChS Rossii / Herald of St. Petersburg University of State Fire Service of Emercom of Russia, 2017, no. 3, pp. 121–128 (in Russian).

13. A. I. Nedobitkov. Peculiarities of current overload in the car electric network. Pozharovzryvobezopasnost/Fire and Explosion Safety, 2019, vol. 28, no. 4, pp. 42–50 (in Russian). DOI: 10.18322/PVB.2019.28.04.42-50.

14. G. I. Smelkov. Pozharnaya bezopasnost elektroprovodok [Fire safety of wirings]. Moscow, Cable LLC. Publ., 2009. 328 p. (in Russian).

15. Babrauskas V. Arc beads from fires: Can ‘cause’ beads be distinguished from ‘victim’ beads by physical or chemical testing? // Journal of Fire Protection Engineering. — 2004. —Vol. 14, No. 2. — Р. 125–147. DOI: 10.1177/1042391504036450.

16. Delplace M., Vos E. Electric short circuits help the investigator determine where the fire started // Fire Technology. — 1983. — Vol. 19, No. 3. — Р. 185–191. DOI: 10.1007/bf02378698.

17. Wright S. A., Loud J. D., Blanchard R. A. Globules and beads: what do they indicate about small-diameter copper conductors that have been through a fire? // Fire Technology. — 2015. — Vol. 51, No. 5. — Р. 1051–1070. DOI: 10.1007/s10694-014-0455-9.

18. Babrauskas V. Arc mapping: a critical review // Fire Technology. — 2018. — Vol. 54, Issue 3. — P. 749–780. DOI: 10.1007/s10694-018-0711-5.

19. Hoffmann D. J., Swonder E. M., Burr M. T. Arc faulting in household appliances subjected to a fire test // Fire Technology. — 2016. — Vol. 52, Issue 6. — P. 1659–1666. DOI: 10.1007/s10694-015-0556-0.

20. Kuan-Heng Liu, Yung-Hui Shih, Guo-Ju Chen, Jaw-Min Chou. Microstructural study on oxygen permeated arc beads // Journal of Nanomaterials. — 2015. — Article ID 373861. — 8 p. DOI: 10.1155/2015/373861.

21. Lewis K. H., Templeton B. Morphological variation in copper arcs during post-arc fire heating // Proceedings of 3rd International Symposium on Fire Investigation Science & Technology. — Sarasota : National Association of Fire Investigators, 2008. — P. 183–195.

22. Murray I., Ajersch F. New metallurgical techniques applied to fire investigation // Fire & Materials '2009. — London : Interscience Communications, Ltd., 2009. — P. 857–869.

23. Carey N. J. Developing a reliable systematic analysis for arc fault mapping : Ph. D. diss. — Strathclyde, United Kingdom : University of Strathclyde, 2009.

24. Roby R. J., McAllister J. Forensic investigation techniques for inspecting electrical conductors involved in fire // Final Technical Report for Award No. 239052. — Columbia : Combustion Science & Engineering, Inc., 2012.

25. P. A. Lukash. Osnovy nelineynoy stroitelnoy mekhaniki [Fundamentals of nonlinear structural mechanics]. Moscow, Stroyizdat, 1978. 204 p. (in Russian).

26. J. V. Gere, S. P. Timoshenko. Mechanics of materials. 3rd ed. London, Chapman & Hall, 1991. 807 p. DOI: 10.1007/978-1-4899-3124-5 (Russ. ed.: S. P. Timoshenko, J. V. Gere. Mekhanika materialov. 2nd ed. Saint Petersburg, Lan Publ., 2002. 672 p.).

27. A. P. Filin. Prikladnaya mekhanika tverdogo deformiruyemogo tela [Applied mechanics of a solid deformable body]. Moscow, Nauka Publ., 1975. Vol. 1, 832 р. (in Russian).

28. M. L. Smolyanskiy. Tablitsy neopredelennykh integralov [Tables of indefinite integrals]. Moscow, Fizmatgiz Publ., 1963. 112 р. (in Russian).

29. I. N. Bronshteyn, K. A. Semendyaev. Spravochnik po matematike dlya inzhenerov i uchashchikhsya vtuzov [Mathematics handbook for engineers and students in higher technical education]. 13th ed. Moscow, Nauka Publ., Fizmatgiz Publ., 1986. 544 p. (in Russian).

30. Pravila ustroystva elektroustanovok. Vse deystvuyushchiye razdely shestogo i sedmogo izdaniy s izmeneniyami i dopolneniyami [Rules of arrangement of electrical installations]. Novosibirsk, Normatika Publ., 2018. 462 р. (in Russian).


Review

For citations:


Nedobitkov A.I., Abdeev B.M. On physical basis of local current overload in vehicle electric mains. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2019;28(6):18-28. (In Russ.) https://doi.org/10.18322/PVB.2019.28.06.18-28

Views: 670


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)