Preview

Extinguishing of flammable liquids by film forming foaming agents

https://doi.org/10.18322/PVB.2017.26.08.45-55

Abstract

This paper describes the results obtained during systematic experimental research of the oil product flame extinguishing process by injecting foam onto the burning surface and to the tank base. As a rule, the same foam generator, compound, chemical formula and proprietary component ratio are used for fire extinguishing using subsurface foam injection and and by feeding foam onto the burning surface. The only way to estimate the foam generator efficiency objectively is carrying out comprehensive testing during which curves are plotted for superficial and interfacial tension at the interface of water foam generator solutions with a hydrocarbon. Fluorated foam generators of known brands were used in the experiments: Ansulite AFFF, Shtamex AFFF, Light WaterFS 201, CAPSTONE 1183 and Shtorm-F. Hydrocarbon with different flash temperature was used as combustible liquids. As a result of the conducted experiments, a general regularity was discovered. It is the functional relation between the specific flow rate of foam generators and foam delivery rate shown using curves, the specific flow rate being minimum at the optimum delivery rate. The specific foam extinguishing efficiency characteristics have been determined during combustible liquid flame extinguishing. They are expressed as a complex of indices: critical and optimum delivery rate, and the minimum specific flow rate of the foam generator. The experiment results have shown that during oil product flame extinguishing using film-forming foam generator foam the value of the optimum delivery rate and minimum specific flow rate in case of subsurface foam injection was lower than during feeding of the foam onto the burning hydrocarbon surface by 25 to 30 %. Consequently, the extinguishing efficiency of the tested film-forming foam generators appeared to higher in case of the subsurface extinguishing method. The difference of indices of foam extinguishing efficiency in case of a particular feeding method is due to destructive effect of some contributing factors. While foam is only exposed to flame jet heat flow during the subsurface oil product flame extinguishing, in case of feeding from above foam is also destroyed as a result of the contact with burning oil product surface. Based on the obtained data, a model of the process of oil extinguishing by feeding foam to the tank base was developed. This model takes into consideration decrease of the burning surface temperature during mixing of homotermal layer when the foam emerges.

About the Authors

D. A. Korolchenko
Национальный исследовательский Московский государственный строительный университет
Russian Federation


A. A. Volkov
Национальный исследовательский Московский государственный строительный университет
Russian Federation


References

1. Шароварников А. Ф., Молчанов В. П., Воевода С. С., Шароварников С. А. Тушение пожаров нефти и нефтепродуктов. -М. : Изд. дом “Калан”, 2002. -448 с.

2. Korzeniowski S., Cortina T. Firefighting foams - Reebok redux // Industrial Fire Journal. - April 2008. -P. 18-20.

3. Lang Xu-qing, Liu Quan-zhen, Gong Hong. Study of fire fighting system to extinguish full surface fire of large scale floating roof tanks // Procedia Engineering. - 2011. - Vol. 11. - P. 189-195. DOI: 10.1016/j.proeng.2011.04.646.

4. Cortina T. The safety & benefits of AFFF agents. Special analysis: Foam // Industrial Fire Journal.- June 2007.-P. 70-75.

5. Pabon M., Corpart J. M. Fluorinated surfactants: synthesis, properties, effluent treatment // Journal of Fluorine Chemistry.-2002.-Vol. 114, No. 2.-P. 149-156. DOI: 10.1016/S0022-1139(02)00038-6.

6. Маркеев В. А., Воевода С. С., Корольченко Д. А. Противопожарная защита объектов резервуарного парка ОАО “НК “Роснефть” // Нефтяное хозяйство. -2006. -№ 9. -С. 83-85.

7. Korolchenko D. A., Degaev E. N., Sharovarnikov A. F. Determination of the effectiveness of extinguishing foaming agents in the laboratory // 2nd International Conference on Material Engineering and Application (ICMEA 2015).-2015. -P. 17-22.

8. Nash P., Whittle J. Fighting fires in oil storage tanks using base injection of foam-Part I // Fire Technology. -1978.-Vol. 14, Issue 1. -P. 15-27. DOI: 10.1007/bf01997258.

9. Shaluf I. M., Abdullah S. A. Floating roof storage tank boilover // Journal of Loss Prevention in the Process Industries. -2011.-Vol. 24, Issue 1. -P. 1-7. DOI: 10.1016/j.jlp.2010.06.007.

10. Huang Yinsheng, Wencheng Zhang, Dai Xiaojing, Zhao Yu. Study on water-based fire extinguishing agent formulations and properties // Procedia Engineering.-2012.-Vol. 45.-P. 649-654. DOI: 10.1016/j.proeng.2012.08.217.

11. NFPA 11. Standard for low, medium, and high-expansion foam. Edition 2002. URL: http://pozhproekt.ru/nsis/nfpa/NFPA11-2002.pdf (дата обращения: 07.06.2017)

12. Bergeron V., Walstra P. Chapter 7. Foams // Fundamentals of Interface and Colloid Science.-2005. -Vol. 5. -P. 7.1-7.38. DOI: 10.1016/S1874-5679(05)80011-X.

13. Korolchenko D., Tusnin А., Trushina S., Korolchenko A. Physical parameters of high expansion foam used for fire suppression in high-rise buildings // International Journal of Applied Engineering Research. -2015.-Vol. 10, No. 21. -P. 42541-42548.

14. Schaefer T. H., Dlugogorski B. Z., Kennedy E. M. Sealability properties of fluorine-free fire-fighting foams (FfreeF) // Fire Technology.-2007.-Vol. 44, No. 3.-P. 297-309. DOI: 10.1007/s10694-007-0030-8.

15. Lattimer B. Y., Trelles J. Foam spread over a liquid pool // Fire Safety Journal. - 2007. - Vol. 42, Issue 4. -P. 249-264. DOI: 10.1016/j.firesaf.2006.10.004.

16. Korolchenko D., Voevoda S. Influence of dispersion degree of water drops on efficiency of extinguishing of flammable liquids // MATEC Web of Conferences.-2016.-Vol. 86, Art. No. 04056. DOI: 10.1051/matecconf/20168604056.

17. Kennedy M. J., Conroy M. W., Dougherty J. A., Otto N., Williams B. A., Ananth R., Fleming J. W. Bubble coarsening dynamics in fluorinated and non-fluorinated firefighting foams // Colloids and Surfaces A: Physicochemical and Engineering Aspects.-2015.-Vol. 470.-P. 268-279. DOI: 10.1016/j.colsurfa. 2015.01.062.

18. Korolchenko D., Voevoda S. Influence of spreading structure in an aqueous solution-hydrocarbon system on extinguishing of the flame of oil products // MATEC Web of Conferences. - 2016. - Vol. 86, Art. No. 04038. DOI: 10.1051/matecconf/20168604038.

19. Абдурагимов И. М., Говоров В. Ю., Макаров В. Е. Физико-химические основы развития и тушения пожаров. -М. : ВИПТШ МВД СССР, 1980. -255 с.

20. Zhang Qinglin, Wang Lu, Bi Yixing, Xu Dajun, Zhi Huiqiang, Qiu Peifang. Experimental investigation of foam spread and extinguishment of the large-scale methanol pool fire // Journal of Hazardous Materials. -2015.-Vol. 287.-P. 87-92. DOI: 10.1016/j.jhazmat.2015.01.017.

21. Nurimoto N. Fire extinguishing installations for oil storages injecting foam under the layer of oil product // Kasay. -1977.-Vol. 27, No. 3. -P. 11-19.

22. Ranjbar H., Shahraki B. H. Effect of aqueous film-forming foams on the evaporation rate of hydrocarbon fuels // Chemical Engineering and Technology. - 2013. - Vol. 36, Issue 2. - P. 295-299. DOI: 10.1002/ceat.201200401.

23. Kovalchuk N. M., Trybala A., Starov V., Matar O., Ivanova N. Fluoro- vs hydrocarbon surfactants: Why do they differ in wetting performance? // Advances in Colloid and Interface Science. - 2014. - Vol. 210. -P. 65-71. DOI: 10.1016/j.cis.2014.04.003.


Review

For citations:


Korolchenko D.A., Volkov A.A. Extinguishing of flammable liquids by film forming foaming agents. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2017;26(8):45-55. (In Russ.) https://doi.org/10.18322/PVB.2017.26.08.45-55

Views: 524


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)