Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search

Research of the extinguishing properties of water and hydrogel with carbon nanoparticles for liquidation burning of the petroleum products

https://doi.org/10.18322/PVB.2017.26.08.31-44

Abstract

The use of sprayed water to extinguish fires in petroleum products is limited by the relatively low rate of vaporization due to the large average size of the droplets of the extinguishing agent. As methods to increase the efficiency of water-based fire, an electrophysical method for controlling the properties of substances at the interface is used, as well as a reagent modification - the deposition of nanomaterial with multilayered carbon nanotubes (MWCNT) into the liquid, and the use of gelling agents to stabilize the nanofluid. Raman spectroscopy revealed the presence in the nanomaterial, in addition to MWCNT, of a large number of by-products of nanotube synthesis. In the electrophysical action, characteristic peaks of nanostructures in water and hydrogel are observed, due to the predominant grouping of MWCNT in the near-surface layer of the liquid. With the help of atomic force microscopy, extended carbon nanostructures included in the composition of the extinguishing agent, as well as traces of amorphous carbon, were observed. In the course of the study, it was found that the increase in the rate of heating of the nanofluid is directly dependent on the concentration of the MWCNT nanomaterial and increases in comparison with distilled water (by 70 % - for the concentration of nanoparticles in water by 1.6 % by vol. and by 50 % - for the concentration of nanoparticles in the hydrogel 1.0 % by vol.), which can be explained by an increase in the thermal conductivity of the system due to a larger number of carbon nanotubes that are conductors of heat from the source of heating. The results obtained allow to select from the presented liquids containing the nanomaterial at a concentration of 1.0 % by vol. as the most effective for cooling the combustion of petroleum products of the combustion zone and to ensure its stability. When determining the surface tension coefficient of a nanofluid, water surface with a nanomaterial (DW + MWCNT 1.0 % by vol.) has a surface tension reduction of 20 %, for hydrogels (DW + Carbopol 0.2 % by mass) - by 58 %. When impact occurs electrophysical additional reduction of surface tension by 10 % preferably for all samples. A significant decrease in the value of the surface tension of the nanofluid, due to the introduction of MWCNT and the gelling component, leads to a decrease in the droplet size by more than 20 % in comparison with the base liquid while maintaining the parameters of the spraying of the extinguishing agent. This helps to reduce the size of droplets in the fire extinguishing substance in the near-surface layer of the burning liquid, increases the efficiency of the process of extinguishing the flame of petroleum products. During the experiments, it was found that the quenching time of water-based nanofluids with MWCNT nanomaterial 1.0 % by vol. on average 5.5 times less than the time of quenching the liquid with water. For hydrogels (DW + Carbopol 0.2 % by mass) with nanomaterial MWCNT 1 % by vol. the fire-fighting time was reduced to 10 times. The intensity of extinguishing water with nanomaterial MWCNT 1 % by vol. decreased by 2 times, and for hydrogels (DW + Carbopol 0.2 % by mass) with nanomaterial MWCNT 1 % by vol. - 3 times. In electrophysical conditions of exposure to the test is an additional nanofluids (10-15 %) reduction of the quenching time and the flow rate of the extinguishing agent. Summarizing the obtained results, it can be concluded that the increase in the fire-extinguishing efficiency of modified extinguishing agents based on atomized water is achieved due to the high thermal stability of the nanomaterial, improved thermal diffusivity of the nanoparticle with MWCNT, stabilization of nanoparticles in the liquid and reducing the rate of their agglomeration, reducing the droplet size by reducing the surface tension and increasing the fluid density.

About the Authors

A. V. Ivanov
Санкт-Петербургский университет ГПС МЧС России
Russian Federation


D. P. Toropov
Санкт-Петербургский университет ГПС МЧС России
Russian Federation


G. K. Ivakhnyuk
Санкт-Петербургский государственный технологический институт (Технический университет)
Russian Federation


A. V. Fedorov
Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики
Russian Federation


A. A. Kuzmin
Санкт-Петербургский университет ГПС МЧС России
Russian Federation


References

1. Горшков В. И.Тушениепламени горючих жидкостей : монография.-М. : Пожнаука, 2007.-267 с.

2. Воднев П. П. Расчет параметров пожара, времени вскипания и выброса нефтепродуктов в процессе горения: методич. указания по выполнению контрольной работы.-Ульяновск : УВАУ ГА, 2008.-17 с.

3. Волков Р. С., Войтков И. С., Высокоморная О. В. Особенности тушения жидких топлив и органических горючих жидкостей распыленным потоком воды // Пожаровзрывобезопасность / Fire and Explosion Safety. -2016.-Т. 25, № 4. -С. 68-75. DOI: 10.18322/PVB.2016.25.04.68-75.

4. Тарасевич С. Э., Яковлев А. Б. Средний диаметр капель, образующихся при распаде жидких струй и пленок (обзор) // Известия высших учебных заведений. Авиационная техника.-2004. -№ 4. -С. 52-57.

5. Пат. 2479005 Российская Федерация. МПК G05B 24/02 (2006.01), H03B 28/00 (2006.01). Способ и устройство управления физико-химическими процессами в веществе и на границе раздела фаз / Ивахнюк Г. К., Матюхин В. Н., Клачков В. А., Шевченко А. О., Князев А. С., Ивахнюк К. Г., Иванов А. В., Родионов В. А.-№ 2011118347/08; заявл. 21.01.2010; опубл. 10.04.2013, Бюл.№ 10. URL: http://www.freepatent.ru/patents/2479005 (дата обращения: 10.04.2017).

6. Алексеик Е. Б., Савенкова А. Е., Гемиш З. Влияние переменных электрических полей на процессы создания и стабилизации воздушно-механических пен // Вестник Санкт-Петербургского университета Государственной противопожарной службы МЧС России : научно-аналитический журнал. - 2013. - № 4. - С. 44-48. URL: http://vestnik.igps.ru/wp-content/uploads/V54/8.pdf (дата обращения: 15.04.2017).

7. Таранцев А. А., Чащин А. С. Применение модифицированных водных растворов для целей пожаротушения на объектах железнодорожного транспорта // Вестник Санкт-Петербургского университета Государственной противопожарной службы МЧС России : научно-аналитический журнал. -2015.-№ 2.-С. 30-37. URL: http://vestnik.igps.ru/wp-content/uploads/V72/5.pdf (дата обращения: 15.04.2017).

8. Степанов В. П. Минимизация задымленности в строительных объемах зданий и сооружений методами конденсационного улавливания и диспергирования электрофизически модифицированной воды : дис. …канд. техн. наук.-СПб., 2007. -133 с.

9. Гаджиев Ш. Г., Иванов А. В., Ивахнюк Г. К., Кадочникова Е. Н. Исследование огнетушащих и теплозащитных свойств водногелевых составов на основе модифицированных наножидкостей // Вестник Санкт-Петербургского университета Государственной противопожарной службы МЧС России : научно-аналитический журнал.-2014.-№ 2.-С. 31-37. URL: http://vestnik.igps.ru/wp-content/uploads/V62/4.pdf (дата обращения: 15.04.2017).

10. Гаджиев Ш. Г., Иванов А. В., Кондрашин А. В. Моделирование дальности подачи струи модифицированных водногелевых огнетушащих веществ // Проблемы управления рисками в техносфере. -2015.-№ 1(33).-С. 60-67.

11. Jiang H., Zhang Q., Shi L. Effective thermal conductivity of carbon nanotube-based nanofluid // Journal of the Taiwan Institute of Chemical Engineers.-2015.-Vol. 55.-P. 76-81. DOI: 10.1016/j.jtice. 2015.03.037.

12. Терехов В. И., Шишкин Н. Е. Экспериментальное исследование испарения капель наножидкости в потоке сухого воздуха // Современная наука: исследования, идеи, результаты, технологии.- 2011. -№ 2(7).-С. 197-200.

13. Ding Y., Alias H., Wen D., Williams R. A. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids) // International Journal of Heat and Mass Transfer.-2006.-Vol. 49, No. 1-2.- P. 240-250. DOI: 10.1016/j.ijheatmasstransfer.2005.07.009.

14. Xie H., Lee H., Youn W., Choi M. Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities // Journal of Applied Physics.-2003.-Vol. 94, No. 8.-P. 4967-4971. DOI: 10.1063/1.1613374.

15. Amiri A., Shanbedi M., Amiri H., Heris S. Z., Kazi S. N., Chew B. T., Eshghi H. Pool boiling heat transfer of CNT/water nanofluids // Applied Thermal Engineering.-2014.-Vol. 71, No. 1.-P. 450-459. DOI: 10.1016/j.applthermaleng.2014.06.064.

16. Авцинов И. А., Попов Г. Г. Проблемы синтеза углеродных нанотрубок // Вестник Воронежского государственного технического университета. -2010. -Т. 6, № 10. -C. 68-71.

17. Иванов А. В., Ивахнюк Г. К., Медведева Л. В. Методы управления свойствами углеводородных жидкостей в задачах обеспечения пожарной безопасности // Пожаровзрывобезопасность / Fire and Explosion Safety. -2016.-Т. 25, № 9. -С. 30-37. DOI: 10.18322/PVB.2016.25.09.30-37.

18. Бобринецкий И. И., Неволин В. К., Симунин М. М. Технология производства углеродных нанотрубок методом каталитического пиролиза этанола из газовой фазы // Химическая технология. -2007. -Т. 8, № 2. -С. 58-62.

19. Коваленко А. А., Елисеев А. А. Спектроскопия комбинационного рассеяния : методическая разработка. -М. : МГУ, 2011.-37 с.

20. Тепломассообмен : методич. указания по самостоятельной работе / Сост.: Д. С. Серебренников, А. А. Дектерев, К. А. Финников, М. С. Лобасова. -Красноярск : ИПК СФУ, 2009. -105 с.

21. Сизов Е. Г., Беховых Ю. В. Механика и молекулярная физика: лабораторный практикум : учебное пособие. -Барнаул : Изд-во АГАУ, 2011. -108 с.

22. Шароварников А. Ф., Мельников А. И. Экспериментальные исследования огнетушащей способности водных пленкообразующих растворов фторированных поверхностно-активных веществ // Пожаровзрывобезопасность / Fire and Explosion Safety.-2015.-Т. 24,№ 9.-С. 74-81. DOI: 10.18322/PVB.2015.24.09.74-81.

23. Эйзенберг Д., Кауцман В. Структура и свойства воды. -Л. : Гидрометеоиздат, 1975. -280 с.

24. Murli C., Song Y. Pressure-induced polymerization of acrylic acid: a raman spectroscopic study // The Journal of Physical Chemistry B. - 2010. - Vol. 114, No. 30. - P. 9744-9750. DOI: 10.1021/jp1034757.

25. Tsukida N., Muranaka H., Ide M., Maeda Y., Kitano H. Effect of neutralization of poly(acrylic acid) on the structure of water examined by raman spectroscopy // The Journal of Physical Chemistry B.-1997. -Vol. 101, No. 34. -P. 6676-6679. DOI: 10.1021/jp971210+.

26. Удовицкий В. Г. Методы оценки чистоты и характеризации свойств углеродных нанотрубок // Физическая инженерия поверхности. -2009. -Т. 7, № 4. -С. 351-373.

27. Khaleduzzaman S. S., Mahbubul I. M., Shahrul I. M., Saidur R. Effect of particle concentration, temperature and surfactant on surface tension of nanofluids // International Communications in Heat and Mass Transfer. -2013.-Vol. 49. -P. 110-114. DOI: 10.1016/j.icheatmasstransfer.2013.10.010.

28. Ивахнюк Г. К., Картель Н. Т., Иванов А. В., Капитоненко З. В. Адсорбционные и электрофизические методы синтеза наноматериалов // Известия Санкт-Петербургского государственного технологического института (технического университета). -2011. -№ 12. -С. 58-59.

29. Yu W., Xie H. A review on nanofluids: preparation, stability mechanisms, and applications // Journal of Nanomaterials. -2012.-17 p. DOI: 10.1155/2012/435873.

30. Иванов А. В., Михайлова В. И., Ивахнюк Г. К., Демехин Ф. В. Исследование характеристик модифицированных гидрогелей для тепловой защиты резервуаров нефтепродуктов // Пожаровзрывобезопасность / Fire and Explosion Safety. - 2017. - Т. 26, № 4. - С. 58-67. DOI: 10.18322/PVB.2017.26.04.58-67.


Review

For citations:


Ivanov A.V., Toropov D.P., Ivakhnyuk G.K., Fedorov A.V., Kuzmin A.A. Research of the extinguishing properties of water and hydrogel with carbon nanoparticles for liquidation burning of the petroleum products. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2017;26(8):31-44. (In Russ.) https://doi.org/10.18322/PVB.2017.26.08.31-44

Views: 672


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)