Operating readiness evaluation method of first level information distribution AFES equipment at facilities of fuel and energy complex in special conditions
https://doi.org/10.18322/PVB.2019.28.01.35-46
Abstract
Introduction. The necessity of obtaining by decision makers (DM) of complete information on first level information distribution equipment operating readiness of Automated Process Control Systems (APCS) at any time. Data on the pre-fire condition at a facility of the fuel and energy complex (FEC) is transmitted using the control elements of Automated Fire and Explosion Safety Systems (AFES) as a part of the APCS. The connection of determining the state of readiness of the AFES equipment with the degree of preventive maintenance is shown. The aim of the study is to obtain a scientifically based tool for determining AFES equipment operating readiness.
Research methods. In order to solve the problem, there was selected a six-level graph of strategic planning model that is offered to a DM for use while evaluating the first level information distribution AFES equipment operating readiness. The hierarchy is based on the implementation of plans for the maintenance, repair and replacement of equipment. There were simulated verification measures and remedial procedures by using the method of successive increments. Two problems of mathematical programming are proposed — linear and nonlinear one. In the first case, a new form of the objective function was obtained, taking into account the maximum efficiency of plans implementation. In the nonlinear formulation in different forms, the criterion search function is considered to estimate the maximum efficiency. Optimal task solving is a conclusion about the use of a certain resource for one specific event.
Study results. The conclusion was made about the feasibility of using the entire resource for a specific event. When solving the optimization problem in the nonlinear formulation, the dynamism of the parameters of the planned work vector to bring the first level AFES information sources in the required state, as well as the work performance intensity vector, is noted. As a result, there was proposed an AFES equipment integral operating readiness formula for a certain number of remedial measures.
Conclusion. A method for evaluating the effectiveness of remedial measures for AFES, taking into account the resource limited by special conditions, is obtained. The use of the method gives an opportunity for on-duty shifts of the fuel and energy complex facility to promptly respond to pre-fire situations.
About the Authors
N. G. TopolskiyRussian Federation
Doctorof Technical Sciences, Professor, Honoured Science Worker of Russian Federation, Professor of Department of Information Technology
Borisa Galushkina St., 4, Moscow, 129366, Russian Federation
I. V. Samarin
Russian Federation
Candidate of Technical Sciences, Docent, Assistant Professor of Department of Automation of Technological Processes
Leninskiy Avenue, 65, Bldg. 1, Moscow, 119991, Russian Federation
A. Yu. Strogonov
Russian Federation
Postgraduate Student of Department of Automation of Technological Processes
Leninskiy Avenue, 65, Bldg. 1, Moscow, 119991, Russian Federation
References
1. Сатин А. П., Ле Тхань Бинь, Прус Ю. В. Прогнозирование готовности пожарной техники на основе марковской модели поломок и восстановления // Технологии техносферной безопасности. — 2012. — № 5(45). — 11 c.
2. Dawoud S. M. Fire protection in the petroleum industry // SPE Annual Technical Conference and Exhibition (11–14 November, 2007, Anaheim, California, USA). DOI: 10.2118/110521-ms.
3. Winmag Plus — основа интеграции для систем безопасности в нефтегазовой отрасли / АО “Хоневелл” // Алгоритм безопасности. — 2018. — № 3. — С. 8–9.
4. Steblev Yu. I., Susarev S. V., Bykov D. E. The principles of designing automated systems for diagnostic monitoring of the engineering structures of hazardous production objects // Russian Journal of Non-destructive Testing. — 2015. — Vol. 51, No. 4. — P. 185–197. DOI: 10.1134/s1061830915040063.
5. Зуев Н. Ю., Хабибулин Р. Ш., Шихалев Д. В., Гудин С. В. Информационная технология экспертного опроса специалистов нефтегазовой отрасли для предотвращения пожаров на объектах защиты // Пожаровзрывобезопасность / Fire and Explosion Safety. — 2018. — Т. 27, № 5. — С. 17–25. DOI: 10.18322/PVB.2018.27.05.17-25.
6. Aleixandre M., Gerboles M. Review of small commercial sensors for indicative monitoring of ambient gas // Chemical Engineering Transactions. — 2012. — Vol. 30. —P. 169–174. DOI: 10.3303/cet1230029.
7. Bogue R. Sensors for fire detection // Sensor Review. — 2013. — Vol. 33, No. 2. — P. 99–103. DOI: 10.1108/02602281311299635.
8. Milov V. R., Suslov B. A., Kryukov O. V. Intellectual management decision support in gas industry // Automation and Remote Control. — 2011. — Vol. 72, No. 5. — P. 1095–1101. DOI: 10.1134/S0005117911050183.
9. Hammond J. S., Keeney R. L., Raiffa H. Smart choices: A practical guide to making better life decisions. — Boston, MA : Harvard Business School Press, 2002. — 256 p.
10. Абросимов А. А., Топольский Н. Г., Федоров А. В. Автоматизированные системы пожаровзрывобезопасности нефтеперерабатывающих производств.— М.:МИПБМВДРоссии,1999.—239 с.
11. Бутузов С. Ю., Крючков А. В., Самарин И. В. Метод количественного расчета совокупного фактора влияния персонала на устойчивость специального программного обеспечения автоматизированных систем пожаровзрывобезопасности // Пожаровзрывобезопасность / Fire and ExplosionSafety.—2018.—Т. 27,№ 7–8.—С. 60–66.DOI:10.18322/PVB.2018.27.07-08.60-66.
12. Nolan D. P. Handbook of fire and explosion protection engineering principles for oil, gas, chemical and related facilities. — 3rd ed. — Norwich, NY : William Andrew, 2010. — 496 p.
13. IRP 15: Snubbing Operations. An Industry Recommended Practice (IRP) for the Canadian oil and gas industry. — May 2015. — Vol. 15. — 167 p. URL: http://www.enform.ca/resources/download-reso-urce.cfm?resourceId=25&type=pdf (дата обращения: 24.11.2018).
14. Construction health and safety manual: oil refineries and petrochemical plants. URL: https://www.ihsa.ca/rtf/health_safety_manual/pdfs/locations/Oil_Refineries.pdf (дата обращения: 24.11.2018).
15. How Russia has overhauled its fire protection sector. URL: http://www.securika-moscow.ru/en-GB/press/news/How-Russia-overhauled-fire-protection-sector.aspx (дата обращения: 24.11.2018).
16. Проектирование НПЗ. URL: http://neftegazproekt.com/proektirovanie-npz/ (дата обращения: 27.11.2018).
17. Самарин И. В. Формализация задачи обоснования среднесрочного плана деятельности для построения автоматизированной системы управления стратегического планирования на предприятии // Инновации и инвестиции. — 2014. — № 4. — C. 177–183.
18. Самарин И. В., Фомин А. Н. Стратегическое планирование на предприятии: применение метода анализа иерархий для стратегического мониторинга деятельности // Экономика, статистика и информатика. ВестникУМО.—2014.—№ 5.—С. 84–89. DOI: 10.21686/2500-3925-2014-5-84-89.
19. Антонов А. В. Системный анализ : учеб. для вузов. — М. : Высшая школа, 2004. — 454 с.
20. Cамарин И.В. АСУ стратегического планирования на предприятии: уточнение методологических и инструментальных основ схемы планирования // Современная наука: актуальные проблемы теории и практики. Серия: Естественные и технические науки. — 2017. — № 2. — С. 31–44.
21. Зорич В. А. Математический анализ. —В2ч.—Изд. 8-е, испр. — М. : МЦНМО, 2017. — Ч. I. — 576 c.
22. Базара М., Шетти К. Нелинейное программирование. Теория и алгоритмы / Пер. с англ. — М. : Мир, 1982. — 583 с.
23. Самарский А. А., Гулин А. В. Численные методы. — М. : Наука, 1989. — 432 с.
Review
For citations:
Topolskiy N.G., Samarin I.V., Strogonov A.Yu. Operating readiness evaluation method of first level information distribution AFES equipment at facilities of fuel and energy complex in special conditions. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2019;28(1):35-46. https://doi.org/10.18322/PVB.2019.28.01.35-46