Preview

Physical mechanism and method for fire liquid hydrocarbons by modified water suspensions of carbon nanostructures

https://doi.org/10.18322/PVB.2019.28.01.22-34

Abstract

Introduction. The purpose of this work is to determine the mechanism for extinguishing liquid hydrocarbons and develop a method for extinguishing them with water-based suspensions with carbon nanostructures.
Materials. Nonfunctionalized (non-funct) and functionalized multilayer carbon nanotubes (MWCNT), as well as astralenes (Astr), were used as nanomaterials dispersed in distilled water.

Experimental part. The experimental part included determining the pH of the suspensions; research of nanostructures by atomic force microscopy; measurement of surface tension suspensions; determining the rate of their heating to the boiling point, the specific heat of vaporization; time measurement of extinguishing model hearth class B.
Results and discussion. The burning liquid hydrocarbons extinguishing mechanism with water and carbon nanostructures suspensions is achieved by intensifying the processes of heat removing from the petroleum product vapors combustion zone. Dispersion of low concentrations of carbon nanostructures (MWCNT, Astralen) 0.05–1.0 % by vol. in aqueous compositions on the base of distillated water (DW) leads to increase the heating rate to the reflux temperature and more intense steam generation, an improvement in the quenching characteristics when sprayed drops are applied to the combustion zone.
In suspensions DW+non-funct MWCNT and DW+MWCNT with concentration 0.8–1.0 % by vol. fire extinguishing efficiency increase by increasing the values of specific heat of vaporization up to the interval 2300…2400 kJ/kg, for DW+Astralen with concentration 0.2–0.5 % by vol. — 2400…2600 kJ/kg, for DW+Carbopol ETD 2020+ +MWCNT with concentration 0.5–1.0 % by vol. — 1100…1400 kJ/kg.
The quenching time dependence of the heating rate to boiling point has a characteristic extremum in the range of 5.5…6.5 °C/min for suspensions DW+non-funct MWCNT and DW+MWCNT with concentration of 0.8–1.0 % by vol., 5.5…6.5 °C/min for DW + Astralen with concentration of 0.2–0.5 % by vol. and 6.0…8.0 °C/min for DW+Carbopol ETD 2020+MWCNT with concentration of 0.5–1.0 % by vol.
Conclusion. Proposed fire extinguishing method can significantly increase fire extinguishing agents effectiveness to eliminate the liquid hydrocarbons burning due to water and carbon nanostructures suspensions droplets intensive heating to the boiling point, evaporation and cooling of the combustion zone. 

About the Authors

A. V. Ivanov
Saint Petersburg University of State Fire Service of Emercom of Russia
Russian Federation

CandidateofTechnicalSciences,Associate Professor of Department of Fire Safety of Technological Processes and Production

Moscow Avenue, 149, Saint Petersburg, 196105, Russian Federation



D. T. Toropov
Saint Petersburg University of State Fire Service of Emercom of Russia
Russian Federation

Postgraduate Student of Department of Physical-Technical Basics of Fire Safety

Moscow Avenue, 149, Saint Petersburg, 196105, Russian Federation



L. V. Medvedeva
Saint Petersburg University of State Fire Service of Emercom of Russia
Russian Federation

Doctor of Pedagogical Sciences, Professor, Head of Department of Physical and Technical Basics of Fire Safety

Moscow Avenue, 149, Saint Petersburg, 196105, Russian Federation



E. S. Kalinina
Saint Petersburg University of State Fire Service of Emercom of Russia
Russian Federation

Candidate of Pedagogical Sciences, Professor of Department of Higher  Mathematics and Systems Modeling of Complex Processes

Moscow Avenue, 149, Saint Petersburg, 196105, Russian Federation



References

1. D. J. Rasbash, Z. W. Rogowski, G. W. V. Stark. Mechanisms of extinction of liquid fires with water sprays. Combustion and Flame, 1960, vol. 4, pp. 223–234. DOI: 10.1016/S0010-2180(60)80026-0.

2. A. F. Sharovarnikov, A. I. Melnikov. Experimental studies of fire extinguishing capacity of the water film forming solutions containing fluorinated surfactants. Pozharovzryvobezopasnost / Fire and Explosion Safety, 2015, vol. 24, no. 9, pp. 74–81 (in Russian). DOI: 10.18322/PVB.2015.24.09.74-81.

3. W. Yu, H. Xie. A review on nanofluids: preparation, stability mechanisms, and applications. Journal of Nanomaterials, 2012, 17 p. DOI: 10.1155/2012/435873.

4. A. V. Ivanov, D. P. Toropov, G. K. Ivakhnyuk, A. V. Fedorov, A. A. Kuzmin. Research of the extinguishing properties of water and hydrogel with carbon nanoparticles for liquidation burning of the petroleum products. Pozharovzryvobezopasnost / Fire and Explosion Safety, 2017, vol. 26, no. 8, pp. 31–44 (in Russian). DOI: 10.18322/PVB.2017.26.08.31-44.

5. Q. Zhao, T. Jiang, C. Li, H. Yin. Synthesis of multi-wall carbon nanotubes by Ni-substituted (loading) MCM-41 mesoporous molecular sieve catalyzed pyrolysis of ethanol. Journal of Industrial and Engineering Chemistry, 2011, vol. 17, no. 2, pp. 218–222. DOI: 10.1016/j.jiec.2011.02.009.

6. Y.-P. Sun, K. Fu, Y. Lin, W. Huang. Functionalized carbon nanotubes: properties and applications. Accounts of Chemical Research, 2002, vol. 35, no. 12, pp. 1096–1104. DOI: 10.1021/ar010160v.

7. A. I. Shames, E. A. Katz, A. M. Panich, D. Mogilyansky, E. Mogilko, J. Grinblat, V. P. Belousov, I. M. Belousova, A. N. Ponomarev. Structural and magnetic resonance study of astralen nanoparticles. Diamond and Related Materials, 2009, vol. 8, no. 2-3, pp. 505–510. DOI: 10.1016/j.diamond.2008.10.056.

8. A. Ponomarev, M. Iudovich. Multi-layered carbon nanoparticles of the fulleroid type. US Grant 9090752B2, July 28, 2015.

9. G. K. Ivakhnjuk, V. N. Matjukhin, V. A. Klachkov, A. O. Shevchenko, A. S. Knjazev, K. G. Ivakhnjuk, A. V. Ivanov, V. A. Rodionov. Method and apparatus for controlling physical-chemical processes in substance and on a phase boundary. Patent RU, no. 2479005, publ. date 10.04.2013, Bull. 10 (in Russian). Available at: http://www.freepatent.ru/patents/2479005 (Accessed November 10, 2018).

10. B. Voigtlander. Scanning probe microscopy. Berlin, Heidelberg, Springer, 2015. 382 p. DOI: 10.1007/978-3-662-45240-0.

11. S. S. Khaleduzzaman, I. M. Mahbubul, I. M. Shahrul, R. Saidur. Effect of particle concentration, temperature and surfactant on surface tension of nanofluids. International Communications in Heat and Mass Transfer, 2013, vol. 49, pp. 110–114. DOI: 10.1016/j.icheatmasstransfer.2013.10.010.

12. Y. Ding, H. Alias, D. Wen, R. A. Williams. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). International Journal of Heat and Mass Transfer, 2006, vol. 49, no. 1-2, pp. 240–250. DOI: 10.1016/j.ijheatmasstransfer.2005.07.009.

13. A. Suriyawong, S. Wongwises. Nucleate pool boiling heat transfer characteristics of TiO2-water nanofluids at very low concentrations. Experimental Thermal and Fluid Science, 2010, vol. 34, no. 8, pp. 992–999. DOI: 10.1016/j.expthermflusci.2010.03.002.

14. D. P. Nolan. Handbook of fire and explosion protection engineering principles for oil, gas, chemical and related facilities.2nd ed. Elsevier Inc., 2011. 340 p. DOI: 10.1016/B978-1-4377-7857-1.00039-2.

15. P. Bhattacharya, S. Sahoo, C. K. Das. Microwave absorption behaviour of MWCNT based nanocomposites in X-band region. Express Polymer Letters, 2013, vol. 7, no. 3, pp. 212–223. DOI: 10.3144/expresspolymlett.2013.20.

16. F. Moulin, M. Devel, S. Picaud. Molecular dynamics simulations of polarizable nanotubes interacting with water. Physical Review B, 2005, vol. 71, no. 16, p. 165401. DOI: 10.1103/PhysRevB.71.165401.

17. A. N. Ponomarev, M. E. Yudovitch, M. V. Gruzdev, V. M. Yudovitch. А nonmetallic nanoparticles in a superficial electromagnetic field. Тopological factor of mesostructures interference. Voprosy materialovedeniya / Problems of Materials Science, 2009, no. 4(60), pp. 59–64 (in Russian).

18. I. E. Dzyaloshinskii, E. M. Lifshitz, L. P. Pitaevskii. General theory of van der Waals' forces. Soviet Physics Uspekhi, 1961, no. 4, pp. 153–176. DOI: 10.1070/PU1961v004n02ABEH003330.

19. V. I. Terekhov, N. E. Shishkin. Evaporation of water droplets containing carbon nanotubes. Technical Physics Letters, 2012, vol. 38, no. 1, pp. 25–28. DOI: 10.1134/S1063785012010142.

20. S. K. Das, S. U. S. Choi, W. Yu, T. Pradeep. Nanofluids: science and technology. Hoboken, New Jersey, John Wiley & Sons, 2007. 397 p. DOI: 10.1002/9780470180693.

21. S. Tanvir, L. Qiao. Surface tension of nanofluid-type fuels containing suspended nanomaterials. Nanoscale Research Letters, 2012, vol. 7, no. 1, p. 226. DOI: 10.1186/1556-276X-7-226.


Review

For citations:


Ivanov A.V., Toropov D.T., Medvedeva L.V., Kalinina E.S. Physical mechanism and method for fire liquid hydrocarbons by modified water suspensions of carbon nanostructures. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2019;28(1):22-34. (In Russ.) https://doi.org/10.18322/PVB.2019.28.01.22-34

Views: 575


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)