Evaporation of the liquid methane from the metal surface
https://doi.org/10.18322/PVB.2019.28.01.14-21
Abstract
Introduction. At the emergency passages of a liquid methane on a soil there is its intensive boiling and the explosive situation is formed. At the passage on metal surfaces boiling happens in the film mode and boiling speed considerably exceeds boiling speed on a soil.
Methods. Calculation of rate of evaporation of a liquid methane is broken into two stages: the first stage — to value of numbers Fо < 0.5, when the surface can be considered thermally thick body, the second stage — for Fо і 0.5 in flesh to Fo* when temperature of a cold surface reaches value of the second critical Tcr2 » 160.56 K and comes to an end film boiling.
Results. Observation is confirmed, that the heat transfer coefficient at film boiling poorly depends on a temperature pressure and actually remains to constants during all process of film boiling. In this case at a thickness of a steel sheet dЈ2.5 mm, that corresponds to Bi Ј 0.1 of a leaf it is possible to consider thermally thin body. This circumstance is exposed calculations for Fо і 0.5. The dependence of mass of the evaporated liquid during film boiling is received and time of film boiling is defined.
Conclusions. The offered computational method of evaporation of a liquid methane from a metal surface is applicable for other couples cryogenic liquid – metal. At the same time it is necessary to consider change of thermal activity of metals (Срrl) with change of their temperature.
About the Authors
V. A. GorevRussian Federation
Yaroslavskoye Shosse, 26, Moscow, 129337, Russian Federation
D. L. Ovsyannikov
Russian Federation
Naberezhnaya St., 2a, room 349, Moscow Region, Pushkino, 141205, Russian Federation
References
1. A. V. Lykov. Teoriya teploprovodnosti [Theory of thermal conductivity]. Moscow, Vysshaya shkola Publ., 1967. 599 p. (in Russian).
2. M. A. Mikheev, I. M. Mikheeva. Osnovy teploperedachi [Heat transfer bases]. 2nd ed. Moscow, Energiya Publ., 1977. 343 p. (in Russian).
3. S. S. Kutateladze. Teploperedacha i gidrodinamicheskoye soprotivleniye [Heat transfer and hydrodynamic drag force]. Moscow, Energoatomizdat Publ., 1990. 367 p. (in Russian).
4. S. S. Kutateladze, V. N. Borishanskiy. Spravochnik po teploperedache [Handbook of heat transfer]. Moscow–Leningrad, Gosenergoizdat Publ., 1958. 414 p. (in Russian).
5. J. A. Rockett, J. A. Milke. Conduction of heat of solids. In: SFPE handbook of fire protection engineering. 3rd ed. Quincy, Massachusetts, National Fire Protection Association, 2002, pp. 1–27.
6. V. A. Gorev, M. V. Fomina. Simplified calculation of heat on a flat surface. Pozharovzryvobezopasnost Fire and Explosion Safety, 2016, vol. 25, no. 3, pp. 5–14 (in Russian).DOI:10.18322/PVB.2016.25.03.5-14.
7. A. V. Lykov (editor-in-chief). Teplo- i massoobmen v protsessakh ispareniya. Sbornik statey Akademii nauk SSSR [Warm and mass transfer in evaporation processes. Ñollected articles of Russian Academy of Sciences]. Moscow, Russian Academy of Sciences Publ., 1958. 255 p. (in Russian).
8. H. Wong, D. Rumschitzki, C. Maldarelli. On the surfactant mass balance at a deforming fluid inter - face // Physics of Fluids. —1996.—Vol. 8, No. 11. —P. 3203–3204. DOI: 10.1063/1.869098.
9. D. N. Gerasimov, E. I. Yurin. Mass and energy flux rates on the surface of an evaporating liquid. High Temperature, 2018, vol. 56, no. 3, pp. 358–365. DOI: 10.1134/S0018151X18030082.
10. Technique of determination of settlement sizes of fire risk on production objects. Approved of order of Emercom of Russia on July 10, 2009 No. 404 (ed. on December 14, 2010) (in Russian). Available at: http://docs.cntd.ru/document/902170886 (Accessed December 20, 2018).
11. Set of rules 12.13130.2009. Determination of categories of rooms, buildings and external installations on explosion and fire hazard (with changes no. 1). Moscow, All-Russian Research Institute for Fire Protection of Emercom of Russia Publ., 2009. 28 p. (in Russian). Available at: http://docs.cntd.ru/document/1200071156 (Accessed December 20, 2018).
12. H. Ingason, Y. Z. Li. Spilled liquid fires in tunnels. Fire Safety Journal, 2017, vol. 91, pp. 399–406. DOI: 10.1016/j.firesaf.2017.03.065.
13. N. B. Vargaftik. Spravochnik po teplofizicheskim svoystvam gazov i zhidkostey [Reference book on thermal properties of gases and liquids]. 2nd ed. Moscow, Nauka Publ., 1972. 720 p. (in Russian).
14. A. P. Solodov. Elektronnyy kurs. Glava 18. Teploobmen pri kipenii [Electronic course. Chapter 18. Heat exchange when boiling] (in Russian). Available at: http://docplayer.ru/45457268/18/teploobmen/prikipenii.html (Accessed December 10, 2018).
15. G. A. Martynov. Fluctuation theory of liquids. High Temperature, 2018, vol. 56, no. 3, pp. 340–350. DOI: 10.1134/S0018151X18030148.
16. E. V. Ametistov, V. V. Klimenko, Yu. M. Pavlov. Kipeniye kriogennykh zhidkostey [Boiling of cryogenic liquids]. Moscow, Energoatomizdat Publ., 1995. 400 p. (in Russian).
17. V. G. Baidakov. Attainable superheating of liquefied gases and their solutions (review article). Low Temperature Physics, 2013, vol. 39, no. 8, pp. 643–664. DOI: 10.1063/1.4818789.
18. D. W. Plachta, W. L. Johnson, J. R. Feller. Zero boil-off system testing. Cryogenics, 2016, vol. 74, pp. 88–94. DOI: 10.1016/j.cryogenics.2015.10.009.
19. K. Bellur, E. F. Médici, M. Kulshreshtha, V. Konduru, D. Tyrewala, A. Tamilarasan, J. McQuillen, J. B. Leão, D. S. Hussey, D. L. Jacobson, J. Scherschligt, J. C. Hermanson, C. K. Choi, J. S. Allen. A new experiment for investigating evaporation and condensation of cryogenic propellants. Cryogenics, 2016, vol. 74, pp. 131–137. DOI: 10.1016/j.cryogenics.2015.10.016.
20. W. U. Notardonato, A. M. Swanger, J. E. Fesmire, K. M. Jumper, W. L. Johnson, T. M. Tomsik. Final test results for the ground operations demonstration unit for liquid hydrogen. Cryogenics, 2017, vol. 88, pp. 147–155. DOI: 10.1016/j.cryogenics.2017.10.008.
21. J. P. Holman. Heat transfer. 10th ed. New York, McGraw-Hill, 2009. 758 p.
22. L. Vandebroek, J. Berghmans. Safety aspects of the use of LNG for marine propulsion. Procedia Engineering, 2012, vol. 45, pp. 21–26. DOI: 10.1016/j.proeng.2012.08.114.
23. V. S. Ajaev. Interfacial fluid mechanics: A mathematical modeling approach. Boston, MA, Springer, 2012. 217 p. DOI: 10.1007/978-1-4614-1341-7.
Review
For citations:
Gorev V.A., Ovsyannikov D.L. Evaporation of the liquid methane from the metal surface. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2019;28(1):14-21. (In Russ.) https://doi.org/10.18322/PVB.2019.28.01.14-21