Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search

Electrostatic induction method in controlling parameters of aero dispersion systems and early detecting thermal decomposition in cable products and other materials

https://doi.org/10.18322/PVB.2018.27.12.37-48

Abstract

Introduction. For the sake of early detection of potential combustion it’s expedient to apply methods, which utilize the analysis of curvature within indirect physical parameters of the area, such as aerosol and gaseous combustion products, represented by aero dispersion systems. Problem formulation. Aero dispersion system can never be sustainable, reason being there are air mass transfer in progress, dispersion and condensation processes, vortex flows occur, particle coagulation takes place, sedimentation under the weight of gravity, evaporation and etc. Materials and methods. Electric induction method of monitoring the parameters of aero dispersion systems implemented in the IP 216-M5 detector, allow for continuous analysis of changes within a wide spectrum of aerosol particles and possess higher sensitivity comparing to other sensor types. The choice of materials was based on the fact, that insulation of electrotechnical materials may be subject to overheat because the increase in the electrical load current flowing within cable products through the conductors due to the emergency state of electrical equipment. Equipment used and appliances. The heating temperature was controlled using a multimeter with a thermocouple, in the temperature-measuring mode in increments of one degree. The electrostatic induction fire detector IP 216-M5, fixes the beginning of the process of thermal decomposition. The decomposition temperature of the test material is determined by the data of a thermocouple, the sensitive element of which is in contact with the heated surface of the solder bath. Conclusion. It was experimentally proved that the electrostatic induction method for controlling aerosol systems makes it possible to detect aerosol products of thermal decomposition in different materials with their lower concentration of less than 0.1 mg/m3 10-20 minutes before ignition of the insulation within an electric cable. The relationship between the auto-ignition temperature and the initial temperature of the thermal decomposition of the insulating sheath of electrical cables has been proven - this temperature gap is 200 °C.

About the Authors

I. V. Grigoriev
Inventor
Russian Federation


V. V. Kutuzov
Saint Petersburg University of State Fire Service of Emercom of Russia
Russian Federation


V. A. Bezrukov
Saint Petersburg National Research University of Information Technologies, Mechanics and Optics
Russian Federation


A. P. Korolkov
Saint Petersburg University of State Fire Service of Emercom of Russia
Russian Federation


Sh. A. Osmanov
Saint Petersburg University of State Fire Service of Emercom of Russia
Russian Federation


References

1. Солонько В. А., Шабардин А. Н., Колесник В. А., Григорьев В. С., Григорьев И. В. Возможность раннего обнаружения пожароопасной ситуации на судах и береговых объектах флота Морской вестник. -2008.-№ 3(27).-C. 57-61.

2. Григорьев В. С., Григорьев И. В., Михаленков С. В., Шабардин А. Н. Раннее обнаружение пожароопасной ситуации Судостроение. -2008. -№ 3(778).-C. 44-47.

3. Григорьев В. С., Григорьев И. В. Аэрозоли и связь их физических параметров с пожароопасной ситуацией Алгоритм безопасности. -2017. -№ 1. -C. 60-63.

4. ШароварФ. И. Пожаропредупредительная автоматика.-М. :Специнформатика-СИ,2013.-556 c.

5. Nemalidinne S. M., Gupta D. Nonsubsampled contourlet domain visible and infrared image fusion framework for fire detection using pulse coupled neural network and spatial fuzzy clustering Fire Safety Journal.-2018. -Vol. 101.-P. 84-101. DOI: 10.1016j.firesaf.2018.08.012.

6. Пат. 2406155 Российская Федерация,МПКG08B 1700 (2006.01). Способ обнаружения пожароопасной ситуации Григорьев В. С., Григорьев И. В., Солонько В. А., Шабардин А. Н. - № 200714020408; заявл. 30.10.2007; опубл. 10.12.2010, Бюл. № 34.

7. Арутюнян Д. М. Новые технологии гарантированного предотвращения пожаров Под общ. ред. Ф. И. Шаровара. -М. : Специнформатика-СИ, 2014. -232 c.

8. Кутузов В. В., Минкин Д. Ю., Терехин С. Н., ОсмановШ.А., Талировский К. С. Методы и технологии обнаружения пожара : монография Под общ. ред. В. С. Артамонова.-СПб. : Астерион, 2015.

9. Кутузов В. В., Саратов Д. Н., Терехин С. Н., Филиппов А. Г. Производственная и пожарная автоматика. Установки и системы пожарной автоматики Под общ. ред. В. С. Артамонова.-СПб. : Астерион, 2014.-272 с.

10. Acase study in security big data analysisRSA Conference 2012. URL: http:darkreading.commonitoringa-case-study-in-security-big-data-analys232602339 (дата обращения: 10.05.2018).

11. Малинин В. Р., Климкин В. И., Аникеев С. В., Коробейникова Е. Г., Винокурова Н. Г., Кожевникова Н. Ю., Мельник А. А., Родионов В. А. Теория горения и взрыва : учеб. Под общ. ред. В. С. Артамонова. -СПб. : Астерион, 2009.-280 с.

12. Magalie C., Anne-Sophie C., Rodolphe S., Laurent F., Emmanuelle G., Christian L. Fire behaviour of electrical cables in cone calorimeter: Influence of cables structure and layout Fire Safety Journal.- 2018. -Vol. 99. -P. 12-21. DOI: 10.1016j.firesaf.2018.05.001.

13. Вогман Л. П., Корольченко И. А., Хрюкин А. В. Определение условий самовозгорания отложений паров горючих жидкостей в воздуховодах вентиляционных систем Пожаровзрывобезопасность Fire and Explosion Safety.-2016.-Т. 25,№8.-С. 34-41. DOI: 10.18322PVB.2016.25.08.34-41.

14. Барботько С. Л., Вольный О. С. Оценка тепловыделения при горении электрических кабелей Пожаровзрывобезопасность Fire and Explosion Safety.-2016.-Т. 25,№ 11.-С. 35-44. DOI: 10.18322PVB.2016.25.11.35-44.

15. Смелков Г. И. Пожарная безопасность электропроводок.-М. : Кабель, 2009. -328 c.

16. Lyon R. E., Fulmer M., Walters R., Crowley S. Effect of airflow and measurement method on the heat release rate of aircraft cabin materials in the Ohio State University apparatus Technical Report DOTFAATC-TN1534. - Federal Aviation Administration, William J. Hughes Technical Center Airport and Aircraft Safety, 2016. -20 p.

17. Einhorn I. N., Chatfield D. A., Voorhees K. J., Hileman F. D., Mickelson R. W., Israel S. C., Futrell J. H., Ryan P. W. A strategy for analysis of thermal decomposition of polymeric materials Fire Safety Journal. -1977. -Vol. 1, Issue 1. -P. 41-56. DOI: 10.10160379-7112(77)90007-8.

18. Chow W. K., Han S. S. Heat release rate calculation in oxygen consumption calorimetry Applied Thermal Engineering.-2011.-Vol. 31, Issue 2-3.-P. 304-310. DOI: 10.1016j.applthermaleng. 2010.09.010.

19. Aven T. Risk assessment and risk management: Review of recent advances on their foundation European Journal of Operational Research. - 2016. - Vol. 253, Issue 1. - P. 1-13. DOI: 10.1016j.ejor.2015.12.023.

20. Sornette D., Maillart T., Krцger W. Exploring the limits of safety analysis in complex technological systems International Journal of Disaster Risk Reduction. - 2013. - Vol. 6. - P. 59-66. DOI: 10.1016j.ijdrr.2013.04.002.

21. He H., Zhang Q., Wang X., Wang F., Zhao L., Zhang Y. The influence of currents on the ignition and correlative smoke productions for PVC-insulated electrical wires Fire Technology.-2017.-Vol. 53, Issue 3. -P. 1275-1289. DOI: 10.1007s10694-016-0634-y.


Review

For citations:


Grigoriev I.V., Kutuzov V.V., Bezrukov V.A., Korolkov A.P., Osmanov Sh.A. Electrostatic induction method in controlling parameters of aero dispersion systems and early detecting thermal decomposition in cable products and other materials. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2018;27(12):37-48. (In Russ.) https://doi.org/10.18322/PVB.2018.27.12.37-48

Views: 635


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)