Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search

Physical and technological principles and methodology for the management of fire protection processes when treating liquid hydrocarbon in the conditions of stabilization of nanostructures

https://doi.org/10.18322/PVB.2018.27.12.7-18.

Abstract

Introduction. The emergence of a fire and explosion situation at the enterprise is due to the peculiarities of the physicochemical properties of the circulating substances, materials and products. To reduce the fire hazard of processes associated with the circulation of liquid hydrocarbons, a technique has been developed to control fire-hazardous processes under conditions of stabilization of carbon nanostructures. Results and discussion. It has been established that with the introduction of carbon nanostructures (CNS) under the conditions of electrophysical influence, the surface tension coefficient increases by 10-30 %. This effect is associated with an increase in the strength of the van der Waals interaction between agglomerates of nanostructures. A decrease in the intensity of evaporation of modified liquid hydrocarbons from the open surface by 20-40 % under the influence of an alternating electric field was observed, which is caused by the preservation of the parameters of the CNS in the medium of liquid hydrocarbons. According to the results of the study of the electrophysical properties of nanofluids obtained under conditions of stabilization of CNS, it was found that the dielectric constant decreases by 20-30 %, which is caused by a decrease in the number of free charges in liquid hydrocarbons during polarization of CNS. The values of the growth time of the values of specific volume electrical resistance increase by 10-20 %, and the values of the electric field strength during homogenization decrease on average by 20 % in comparison with nanofluids that are not subjected to electrophysical effects. The results of the study of the topology of agglomerations of the CNS in nanofluids under stabilization conditions reflect a decrease in the growth of agglomerations of nanostructures by an average of 40 %, which indicates that the distances between nanoparticles remain unchanged compared to nanofluids prepared without additional methods for stabilizing the CNS. Conclusion. Physical and technological principles of control of fire-hazardous processes based on the mechanism of stabilizing the parameters of the CNS under the influence of an alternating electric field are formulated. Based on the physico-technological principles, a method for controlling fire-hazardous processes when handling liquid hydrocarbons using nanocomponent additives and further stabilizing CNS containing multi-layered carbon nanotubes (MWCNT) has been developed, which allows reducing the intensity of vaporization and electrification processes when handling liquid hydrocarbons to quickly prevent manifestations possible fire and explosion situations in the process.

About the Authors

A. V. Ivanov
Saint Petersburg University of State Fire Service of Emercom of Russia
Russian Federation


A. A. Miftakhutdinova
Saint Petersburg University of State Fire Service of Emercom of Russia
Russian Federation


G. K. Ivakhnyuk
Saint Petersburg State Technology Institute (Technical University)
Russian Federation


A. V. Basharichev
Saint Petersburg University of State Fire Service of Emercom of Russia
Russian Federation


References

1. Nolan D. P. Handbook of fire and explosion protection engineering principles for oil, gas, chemical and related facilities.-2nd ed.-Elsevier Inc., 2011.-340 p. DOI: 10.1016B978-1-4377-7857-1.00039-2.

2. Иванов А. В., Ивахнюк Г. К., Медведева Л. В. Методы управления свойствами углеводородных жидкостей в задачах обеспечения пожарной безопасности Пожаровзрывобезопасность Fire and Explosion Safety. -2016. -Т. 25, № 9. -С. 30-37. DOI: 10.18322PVB.2016.25.09.30-37.

3. Иванов А. В., Сорокин А. Ю., Ивахнюк Г. К., Демехин Ф. В. Управление электростатическими свойствами жидких углеводородов, модифицированных углеродными наноструктурами Пожаровзрывобезопасность Fire and Explosion Safety. - 2017. - Т. 26, № 7. - С. 16-27. DOI: 10.18322PVB.2017.26.07.16-27.

4. Иванов А. В., Мифтахутдинова А. А., Нефедьев С. А., Симонова М. А., Маслаков М. Д. Условия стабилизации наноструктур для безопасной транспортировки легковоспламеняющихся жидкостей Пожаровзрывобезопасность Fire and Explosion Safety. - 2017. - Т. 26, № 9. - С. 35-43. DOI: 10.18322PVB.2017.26.09.35-43.

5. Пат. 2479005 Российская Федерация. МПК G05B 2402 (2006. 01), H03B 2800 (2006. 01). Способ и устройство управления физико-химическими процессами в веществе и на границе раздела фаз Ивахнюк Г. К., Матюхин В. Н., Клачков В. А., Шевченко А. О., Князев А. С., Ивахнюк К. Г., Иванов А. В., Родионов В. А.-№ 201111834708; заявл. 21.01.2010; опубл. 10.04.2013, Бюл.№ 10.

6. Wang J.-S., Wang J., Lь J. T. Quantum thermal transport in nanostructures The European Physical Journal B. -2008. -Vol. 62, Issue 4. -P. 381-404. DOI: 10.1140epjbe2008-00195-8.

7. Wen D., Ding Y. Formulation of nanofluids for natural convective heat transfer applications International Journal of Heat and Fluid Flow.-2005.-Vol. 26, No. 6.-P. 855-864. DOI: 10.1016j.ijheatfluidflow. 2005.10.005.

8. Верёвкин В. Н. Стандарты и нормы электростатической искробезопасности (ЭСИБ) Энергобезопасность и энергосбережение. -2008.-№ 4. -С. 41-48.

9. Shah N., Panjala D., Huffman G. P. Hydrogen production by catalytic decomposition of methane Energy & Fuels. -2001. -Vol. 15, No. 6. -P. 1528-1534. DOI: 10.1021ef0101964.

10. Modak M., Sharma A. K., Sahu S. K. An experimental investigation on heat transfer enhancement in circular jet impingement on hot surfaces by using Al2O3water nano-fluids and aqueous high-alcohol surfactant solution Experimental Heat Transfer. - 2018. - Vol. 31, No. 4. - P. 275-296. DOI: 10.108008916152.2017.1381655.

11. Hippel von A. R. Dielectrics and waves. -NY : John Wiley and Sons, 1954. -439 p.

12. Deng H., Ma M., Song Y., He Q., Zheng Q. Structural superlubricity in graphite flakes assembled under ambient conditions Nanoscale. - 2018. - Vol. 10, No. 29. - P. 14314-14320. DOI: 10.1039c7nr09628c.

13. Tanvir S., Qiao L. Surface tension of nanofluid-type fuels containing suspended nanomaterials Nanoscale Research Letters.-2012.-Vol. 7, Issue 1.-P. 226. DOI: 10.11861556-276X-7-226.

14. Дзялошинский И. Е., Лифшиц Е. М., Питаевский Л. П. Общая теория Ван-дер-Ваальсовых сил Успехи физических наук.-1961.-Т. 73,№3.-С. 381-422.DOI:10.3367ufnr.0073.196103b.0381.

15. Yu W., Xie H.Areview on nanofluids: preparation, stability mechanisms, and applications Journal of Nanomaterials. -2012. -17 p. DOI: 10.11552012435873.

16. Пономарев А. Н., Юдович М. Е., Груздев М. В., Юдович В. М. Неметаллическая наночастица во внешнем электромагнитном поле. Топологические факторы взаимодействия мезоструктур Вопросы материаловедения. -2009. -№ 4(60).-С. 59-64.

17. Mukherjee S., Paria S. Preparation and stability of nanofluids-A review IOSR Journal of Mechanical and Civil Engineering.-2013.-Vol. 9, No. 2. -P. 63-69. DOI: 10.97901684-0926369.

18. Ghadimi A., Saidur R., Metselaar H. S. C. A review of nanofluid stability properties and characterization in stationary conditions International Journal of Heat and Mass Transfer.-2011.-Vol. 54, No. 17-18.-P. 4051-4068. DOI: 10.1016j.ijheatmasstransfer.2011.04.014.

19. Bhunia M. M., Panigrahi K., Das S., Chattopadhyay K. K., Chattopadhyay P. Amorphous graphene- Transformer oil nanofluids with superior thermal and insulating properties Carbon. - 2018. - Vol. 139. -P. 1010-1019. DOI: 10.1016j.carbon.2018.08.012.

20. Nor Azwadi Che Sidik, Muhammad Mahmud Jamil, Wan Mohd Arif Aziz Japar, Isa Muhammad Adamu. A review on preparation methods, stability and applications of hybrid nanofluids Renewable and Sustainable Energy Reviews.-2017.-Vol. 80.-P. 1112-1122. DOI: 10.1016j.rser.2017.05.221.


Review

For citations:


Ivanov A.V., Miftakhutdinova A.A., Ivakhnyuk G.K., Basharichev A.V. Physical and technological principles and methodology for the management of fire protection processes when treating liquid hydrocarbon in the conditions of stabilization of nanostructures. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2018;27(12):7-18. (In Russ.) https://doi.org/10.18322/PVB.2018.27.12.7-18.

Views: 674


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)