Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search

Model of evaluation of comprehensive safety in the APCS with the use of diagnostic fire detectors for the construction of automated systems of support of management of fire and explosion safety

https://doi.org/10.18322/PVB.2018.27.11.15-22

Abstract

Introduction. Beginning this paper considers the important measures determining the state of integrated security of facilities of the fuel and energy complex. It says about necessity regular equipment diagnostics of automated process control system (APCS). There is a serious risk of unforced human error. So it says about special automated systems of fire and explosion safety such as means of control of APCS. It is necessary to keep in mind that automated system of fire and explosion protection (ASFEP) is a part automated control system of technological process. The study aims to build a mathematical model of comprehensive safety of objects of fuel and energy complex in APCS. A special evaluation function was chosen. This function is the dependence of the detector on the vector of controlling purposes. The method of assessing the reliability of ASFEP is described using the vector of planning purposes. Methodology. Diagnostic fire prevention events are described. Besides their specificities and frequency are mentioned. It was agreed that implementing of digital twin depend to foreign technologies significantly. This fact actually affects of a sustainability of manufacturing process at facilities of the fuel and energy complex. To study the integrated security in the APCS a mathematical model was built. A detector is an important object constructed model. The corresponding function is formed for connection of detectors operation with stabilizing procedures. The criteria for assessing the reliability of the equipment of the first level of APCS were determined. The local and integral quality indicators are presented. In addition the vector of planning purposes is considered for assessing the reliability of automated system of fire and explosion protection. Results. It is important to analyze the local indicators separately. As an example the resource indicator of quality is described. This example leads to an important conclusion about special conditions of functioning of the equipment. The possibility of using the methodology of strategic planning as a part of information and analytical system for increase of reliability and survivability of APCS is shown. Conclusion. The paper concludes that the tools of strategic planning as a subsystems of automated system of fire and explosion protection are able to provide the necessary diagnostics of the equipment of the first level of informing the decision-maker.

About the Authors

N. G. Topolskiy
State Fire Academy of Emercom of Russia
Russian Federation


I. V. Samarin
Gubkin Russian State University of Oil and Gas (National Research University)
Russian Federation


A. Yu. Strogonov
Gubkin Russian State University of Oil and Gas (National Research University)
Russian Federation


References

1. Dawoud S. M. Fire protection in the petroleum industry SPE Annual Technical Conference and Exhibition (11-14 November, 2007, Anaheim, California, USA). DOI: 10.2118110521-ms.

2. Смирнов А. В., Хабибулин Р. Ш., Тараканов Д. В. Применение многоагентного подхода для поддержки управления безопасностью в техносфере Вестник Иркутского государственного технического университета.-2018.-Т. 22,№1(132).-C. 118-133. DOI: 10.212851814-3520-2018-1-118-133.

3. Абросимов А. А., Топольский Н. Г., Федоров А. В. Автоматизированные системы пожаровзрывобезопасности нефтеперерабатывающих производств.-М. :МИПБМВДРоссии, 1999.-239 с.

4. РД 153-34.0-03.301-00 (ВППБ 01-02-95). Правила пожарной безопасности для энергетических предприятий. -М. : Изд-во НЦ ЭНАС, 2004. -128 с.

5. О противопожарном режиме : постановление Правительства Российской Федерации от 25.04.2012 № 390 (ред. от 30.12.2017). URL: http:www.consultant.rudocumentcons_doc_LAW_129263 (дата обращения: 07.09.2018).

6. Проектирование НПЗ. URL: http:neftegazproekt.comproektirovanie-npz (дата обращения: 07.09.2018).

7. Prakash J. Digital twins define oil & gas 4.0. URL: https:www.arcweb.comblogdigital-twinsdefineoil-gas-40 (дата обращения: 10.09.2018).

8. Aleixandre M., Gerboles M. Review of small commercial sensors for indicative monitoring of ambient gas Chemical Engineering Transactions.-2012.-Vol. 30.-P. 169-174.DOI:10.3303CET1230029.

9. IRP 15: Snubbing Operations. An Industry Recommended Practice (IRP) for the Сanadian oil and gas industry.-May 2015.-Vol. 15.-167 p. URL: http:www.enform.caresourcesdownload-resource. cfm?resourceId

10. Construction Health and Safety Manual: Oil Refineries and Petrochemical Plants. URL: https:www.ihsa.cartfhealth_safety_manualpdfslocationsOil_Refineries.pdf (дата обращения: 13.09.2018).

11. Альгин В. Б., Ишин Н. Н. Надежность технически сложных изделий в свете “Индустрии 4.0” Актуальные вопросы машиноведения. -2017. -Т. 6. -С. 43-54.

12. Ромашкова И. А., Лосаберидзе Т. Л. Реализация концепции “цифрового двойника” в российском производстве как этап перехода к четвертой промышленной революции Постулат.-2018.- № 5-1(31).-С. 139.

13. Самарин И. В. Модель оценки обеспечения комплексной безопасности на рассредоточенном объекте защиты в обычных условиях при помощи булевых извещателей вАСУПбез учета координат для построения автоматизированной системы управления формированием плана мероприятий по защите объектовТЭК Естественные и технические науки.-2018.-Вып. 8(122). -C. 180-186.

14. Bogue R. Sensors for fire detection Sensor Review.-2013.-Vol. 33, No. 2.-P. 99-103. DOI: 10.110802602281311299635.

15. Андреев Е. Б., Ключников А. И., Кротов А. В., Попадько В. Е., Шарова И. Я. Автоматизация технологических процессов добычи и подготовки нефти и газа : учебное пособие для вузов.-М. : Недра-Бизнесцентр, 2008. -399 c.

16. Сухарев М. Г., Арсеньев-Образцов С. С., Жукова Т. М. Основы математического и компьютерного моделирования в задачах нефтегазового комплекса : учебное пособие для вузов. - М. : МАКС Пресс, 2010.-120 c.

17. Alekhin E. M., Brushlinsky N. N., Sokolov S. V., Wagner P. Russian simulation for strategic planning Fire International. -1996.-No. 154.-P. 32-33.

18. Самарин И. В. Формализация задачи обоснования среднесрочного плана деятельности для построения автоматизированной системы управления стратегического планирования на предприятии Инновации и инвестиции. -2014. -№ 4-C. 177-183.

19. Самарин И. В. АСУ стратегического планирования на предприятии: уточнение методологических и инструментальных основ схемы планирования Современная наука: актуальные проблемы теории и практики. Серия: Естественные и технические науки.-2017.-№2.-С. 31-44.

20. Самарин И. В. Стратегическое планирование: модифицированный метод парных сравнений для задач высокой размерности Труды Российского государственного университета нефти и газа имени И. М. Губкина. -2016.-№ 1282.-С. 121-134.

21. Beata P. A., Jeffers A. E., Kamat V. R. Real-time fire monitoring and visualization for the post-ignition fire state in a building Fire Technology. - 2018. - Vol. 54, Issue 4. - P. 995-1027. DOI: 10.1007s10694-018-0723-1.

22. Novak T., Gerstinger A. Safety- and security-critical services in building automation and control systems IEEE Transactions on Industrial Electronics.-2010.-Vol. 57, No. 11.-P. 3614-3621. DOI: 10.1109tie.2009.2028364.

23. Steblev Yu. I., Susarev S. V., Bykov D. E. The principles of designing automated systems for diagnostic monitoring of the engineering structures of hazardous production objects Russian Journal of Nondestructive Testing. -2015.-Vol. 51, No. 4. -Р. 185-197. DOI: 10.1134s1061830915040063.


Review

For citations:


Topolskiy N.G., Samarin I.V., Strogonov A.Yu. Model of evaluation of comprehensive safety in the APCS with the use of diagnostic fire detectors for the construction of automated systems of support of management of fire and explosion safety. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2018;27(11):15-22. (In Russ.) https://doi.org/10.18322/PVB.2018.27.11.15-22

Views: 544


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)