Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search

EXERGETIC ASSESSMENT OF FIRE HAZARDS OF CARGO TRANSPORTATION ON RAILWAY TRANSPORT

https://doi.org/10.18322/PVB.2018.27.10.26-37

Abstract

Introduction. The management of municipal solid waste (MSW) is one of the important problems of our time. Security is only possible when solving this problem.

The amount of MSW is steadily increasing. The project of garbage transportation from Moscow and St. Petersburg by railway is begins to have results to solve problems related to waste management.

The purpose of this work is to substantiate the possibility and advantages of using the exergy fire risk assessment of transportation of MSW in railway transport.

Theory and calculations. The concept of chemical exergy is used to effectively design energy conversion processes, study the level of environmental impact of equipment and technologies, and determine the possibility of minimizing it.

The exergy method can be applied to the assessment of energy-ecological efficiency and the fire hazard of the transport of dangerous waste by train.

Analysis of changes in the morphological composition of the waste was implemented from the 20s of XX century to the present. Formulas for calculating chemical exergy and HHV of MSW were presented.

Results and discussion. The values of chemical exergy and HHV of MSW are determined. An in­crease in the values of these indicators was acknowledged, which is determined by changes in the morpho­logical composition of the waste.

The dependence between exergy and HHV for the components of MSW was obtained, the correlation coefficient is R2 = 0.975. The dependence between the exergy of TCR of different morphological composi­tion and the HHV, R2 = 0.977, was built. As a result, an analysis of changes in these characteristics was proven by years and the determinated by cities in Russia.

It was proposed to introduce the concept of “exergy” in the procedure for determining the hazard class of MSW. The advantages of the exergy assessment of the fire danger of traffic on the railway transport are revealed.

Conclusion. The exergy approach allows to comprehensively address the issues of energy-ecological efficiency and fire hazard of waste management processes in railway transport. Accounting for indicators of fire hazard through exergy when assigning the hazard class MSW contributes to improving the safety of traffic on the railway transport.

About the Authors

A. G. Khaydarov
Saint Petersburg State Technology Institute (Technical University).
Russian Federation

Candidate of Technical Sciences, Docent, Associate Professor of Department of Business Informatics.

Moskovskiy Avenue, 26, Saint Petersburg, 190013.



L. A. Koroleva
aint Petersburg University of State Fire Service of Emercom of Russia.
Russian Federation

Candidate of Technical Sciences, Docent, Deputy Head of Fire, Rescue Equipment and Automotive Industry Department.

Moskovskiy Avenue, 149, Saint Petersburg, 196105.



G. K. Ivakhnyuk
Saint Petersburg State Technology Institute (Technical University).
Russian Federation

Doctor of Chemical Sciences, Professor, Head of Department of Engineering Protection of Environment.

Moskovskiy Avenue, 149, Saint Petersburg, 196105.

 



References

1. Vakhitov Yu. F., Shamsutdinova L. R., Zvereva T. I., AkbalinaZ. F., BelanL. N. The study of the morphological changes in the composition of solid waste in the city Ufa. Vestnik Rossiyskogo universiteta druzhby narodov. Seriya: Ekologiya i bezopasnost zhiznedeyatelnosti / RUDNJournal of Ecology and Life Safety, 2012, no. 4, pp. 63-69 (in Russian).

2. Di Foggia G., Beccarello M. Improving efficiency in the MSW collection and disposal service com-bining price cap and yardstick regulation: The Italian case. Waste Management, 2018, vol. 79, pp. 223-231. DOI: 10.1016/j.wasman.2018.07.040.

3. Aleshina T. A. The aspects of fire safety at landfills. Vestnik MGSU/Proceedings of Moscow State University of Civil Engineering, 2014, no. 1, pp. 119-124 (in Russian). DOI: 10.22227/1997- 0935.2014.1.119-124.

4. Liberman B. A., Khmelev A. S. Ecological problems of dangerous goods’ shipping by the Russian rail¬ways. Sovremennyye problemy transportnogo kompleksa Rossii / Modern Problems of Russian Trans¬port Complex, 2016, vol. 6, no. 1, pp. 51-54 (in Russian). DOI: 10.18503/2222-9396-2016-6-1-51-54.

5. Szargut J., Petela R. Eksergiya [Exergy]. Moscow, Energiya Publ., 1968. 280 p. (in Russian).

6. Szargut J., Morris D. R., Steward F. R. Exergy analysis of thermal, chemical and metallurgical pro-cesses. New York, Hemisphere Publishing Corporation, 1988. 332 p.

7. Song G., Shen L., Xiao J. Estimating specific chemical exergy of biomass from basic analysis data. Industrial & Engineering Chemistry Research, 2011, vol. 50, issue 16, pp. 9758-9766. DOI: 10.1021/ie200534n.

8. Popov V. G., Borovkov Yu. N., Sukhov F. I. Assessment of energy and environmental efficiency. Mir transporta / World of Transport and Transportation, 2012, vol. 10, no. 3, pp. 96-101 (in Russian).

9. MotasemiF., AfzalM. T., SalemaA. A., MoghavvemiM., ShekarchianM., ZarifiF., MohsinR. Energy and exergy utilization efficiencies and emission performance of Canadian transportation sector, 1990-2035. Energy, 2014, vol. 64, pp. 355-366. DOI: 10.1016/j.energy.2013.09.064.

10. ZarifiF., MahliaT. M. I., MotasemiF., ShekarchianM., MoghavvemiM. Current and future energy and exergy efficiencies in the Iran’s transportation sector. Energy Conversion and Management, 2013, vol. 74, pp. 24-34. DOI: 10.1016/j.enconman.2013.04.041.

11. Seckin C., Sciubba E., Bayulken A. R. Extended exergy analysis of Turkish transportation sector. Journal of Cleaner Production, 2013, vol. 47, pp. 422-436. DOI: 10.1016/j.jclepro.2012.07.008.

12. Analiz sostoyaniya pozharnoy bezopasnosti na obyektakh i podvizhnom sostave OAO “RZhD” v 2017 godu [Analysis of the state of fire safety at the facilities and rolling stock of the Open Joint Stock Company “Russianrailways”in2017]. Moscow, OJSC Russian railways Publ., 2017.18 p. (in Russian).

13. Makarichi L., Techato K.-A., Jutidamrongphan W. Material flow analysis as a support tool for multi¬criteria analysis in solid waste management decision-making. Resources, Conservation and Recycling, 2018, vol. 139, pp. 351-365. DOI: 10.1016/j.resconrec.2018.07.024.

14. Kozlov G. V., Ivakhnyuk G. K. Morphological structure of waste composition on world regions in XX and the beginning of the XXI century (review). Izvestiya SPbGTI (TU) / Bulletin ofthe Saint Petersburg State Institute of Technology (Technical University), 2014, no. 24(50), pp. 58-56 (in Russian).

15. Moody C. M., Townsend T. G. A comparison of landfill leachates based on waste composition. Waste Management, 2017, vol. 63, pp. 267-274. DOI: 10.1016/j.wasman.2016.09.020.

16. Arzamasova Z. A., Aleksandrovskaya Z. I., Gulyaev N. F., Kirpichnikov A. A., Krkhambarov Ya. N., Kuzmenkova A. M., Shapiro M. A. Sanitarnaya ochistka gorodov (sbor, udaleniye, obezvrezhivaniye i ispolzovaniye tverdykh otbrosov) [Urban sanitation (collection, disposal, decontamination and use of solid waste)]. Moscow, Stroyizdat Publ., 1966. 220 p. (in Russian).

17. Vladimirov Ya. A., ZyssinL. V. Methodological aspects of energy utilization of municipal solid waste and its gasification products. Nauchno-tekhnicheskiye vedomosti SPbPU. Estestvennyye i inzhenernyye nauki / St. Petersburg Polytechnic University Journal of Engineering Science and Technology, 2018, vol. 24, no. 1, pp. 5-16. DOI: 10.18721/JEST.240101.

18. Song G., Xiao J., Zhao H., Shen L. A unified correlation for estimating specific chemical exergy of solid and liquid fuels. Energy, 2012, vol. 40, issue 1, pp. 164-173. DOI: 10.1016/j.energy.2012.02.016.

19. EbohF. C., AhlstromP., Richards T. Estimating the specific chemical exergy of municipal solid waste. Energy Science & Engineering, 2016, vol. 4, issue 3, pp. 217-231. DOI: 10.1002/ese3.121.

20. Wang Y., Zhang X., Liao W., Wu J., Yang X., Shui W., Deng S., Zhang Y., Lin L., Xiao Y., Yu X., Peng H. Investigating impact of waste reuse on the sustainability of municipal solid waste (MSW) in¬cineration industry using emergy approach: A case study from Sichuan province, China. Waste Mana¬gement, 2018, vol. 77, pp. 252-267. DOI: 10.1016/j.wasman.2018.04.003.

21. Sun L., Fujii M., Tasaki T., Dong H., Ohnishi S. Improving waste to energy rate by promoting an in-tegrated municipal solid-waste management system. Resources, Conservation and Recycling, 2018, vol. 136, pp. 289-296. DOI: 10.1016/j.resconrec.2018.05.005.

22. Aleksashina V.V. The ecology of the city. Waste incineration plants. Academiya. Arkhitektura i stroitel- stvo / Academia. Architecture and Construction, 2014, no. 4, pp. 77-86 (in Russian). Available at: https://cyberleninka.ru/article/n/ekologiya-goroda-musoroszhigatelnye-zavody (Accessed 30 August 2018).

23. Han J., YaoX., Zhan Y., Oh S.-Y., KimL.-H., Kim H.-J. A method for estimating higher heating value of biomass-plastic fuel. Journal of the Energy Institute, 2017, vol. 90, issue 2, pp. 331-335. DOI: 10.1016/j.joei.2016.01.001.

24. Boumanchar I., Chhiti Y., M’hamdi Alaoui F. E., El Ouinani A., Sahibed-Dine A., Bentiss F., Jama C., Bensitel M. Effect of materials mixture on the higher heating value: Case of biomass, biochar and muni¬cipal solid waste. Waste Management, 2017, vol. 61, pp. 78-86. DOI: 10.1016/j.wasman.2016.11.012.

25. Shi H., Mahinpey N., Aqsha A., Silbermann R. Characterization, thermochemical conversion studies, and heating value modeling of municipal solid waste. Waste Management, 2016, vol. 48, pp. 34-47. DOI: 10.1016/j.wasman.2015.09.036.

26. Zhang Y., Wang Q., Li B., Li H., Zhao W. Is there a general relationship between the exergy and HHV for rice residues? Renewable Energy, 2018, vol. 117, pp. 37-45. DOI: 10.1016/j.renene.2017.10.022.

27. Huang Y. W., Chen M. Q., Li Q. H., Xing W. A critical evaluation on chemical exergy and its correla¬tion with high heating value for single and multi-component typical plastic wastes. Energy, 2018, vol. 156, pp. 548-554. DOI: 10.1016/j.energy.2018.05.116.

28. Technical regulations for fire safety requirements. Federal Law on 22.07.2008 No. 123 (ed. 29.07.2017) (in Russian). Available at: www.consultant.ru/document/cons_doc_LAW_78699/ (Accessed 21 August 2018).


Review

For citations:


Khaydarov A.G., Koroleva L.A., Ivakhnyuk G.K. EXERGETIC ASSESSMENT OF FIRE HAZARDS OF CARGO TRANSPORTATION ON RAILWAY TRANSPORT. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2018;27(10):26-37. (In Russ.) https://doi.org/10.18322/PVB.2018.27.10.26-37

Views: 530


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)