Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search

FORECASTING OF FLASH POINT BY MEANS OF KDS 1.0 NEUROPACKAGE ON THE EXAMPLE OF ESTERS OF OLEIC ACID

https://doi.org/10.18322/PVB.2016.25.03.21-26

Abstract

In article topical issue - lack of physical and chemical properties of the new synthesized substances is brought up. These properties will allow workers of supervising activity to develop systems of ensuring fire safety on objects of protection. Operability of such systems is reached by an exception of the combustible environment or a source of ignition. On the example of esters of oleic acid which are used practically in all areas of the industry and are made according to help data in number of more than several tens millions tons per year, it was succeeded to predict flash point, one of the most important fire-dangerous indicators of properties of substance, by means of KDS 1.0 neuropackage developed by us. The Neyropaket KDS 1.0 program allows: to load and look through the databases containing structures of chemical compounds and their properties; to carry out correlation of the entered data; statistically to estimate the received models; to use the received neural network models for forecasting of properties of substances, without carrying out difficult experiment. It's carried out verification of data based on some help data. Besides, flash point of esters of oleic acid data about which are absent in reference books was predicted. It gives the chance to make a start from the received values by development of systems of ensuring fire safety. On the basis of knowledge of flash point it is possible to perfrom calculation of category of the room which is necessary for establishment of requirements of fire safety. Such approach to forecasting of fire-dangerous property of substance is based on the description of structure of a molecule by means of molecular descriptors and establishment of quantitative correlations between the found values by means of artificial neural networks. During research of flash point the artificial neural network allowing to predict values with a margin error, not exceeding 8 %, in comparison with help data was simulated. Besides, the way of forecasting of fire-dangerous properties of substances based on use of molecular descriptors and artificial neural networks allows to draw a conclusion on possibility of application of such way for forecasting of other fire-dangerous properties of organic substances.

About the Authors

D. S. Korolev
Voronezh Institute of State Firefighting Service of Emercom of Russia
Russian Federation


A. V. Kalach
Voronezh Institute of State Firefighting Service of Emercom of Russia
Russian Federation


D. V. Kargashilov
Voronezh Institute of State Firefighting Service of Emercom of Russia
Russian Federation


References

1. Пустовалова Л. М. Органическая химия. - Ростов : Феникс, 2003. - 320 с.

2. Технический регламент о требованиях пожарной безопасности: Федер. закон от 22.07.08 № 123-ФЗ // Собр. законодательства РФ. - 2008. - №30(ч. I), ст. 3579.

3. Королев Д. С., Калач А. В. Категорирование помещений на основе дескрипторов и метода нейронных сетей // Вестник БГТУ им. В. Г. Шухова. - 2015. - №5. - С. 210-213.

4. Королев Д. С., Калач А. В., Каргашилов Д. В., Сорокина Ю. Н. Прогнозирование основных показателей пожаровзрывоопасности органических соединений с помощью дескрипторов и искусственных нейронных сетей, используемых в расчете пожарного риска // Пожаровзрывобезопасность. - 2015. - Т. 24, № 9. - С. 32-38. DOI: 10.18322/PVB.2015.24.09.32-38.

5. Королев Д. С., Калач А. В., Рудаков О. Б. Прогнозирование пожароопасных свойств веществ // Безопасность в техносфере. - Т. 4, № 5. - С. 3-6. DOI: 10.12737/16957.

6. Калач А. В., Карташова Т. В., Сорокина Ю. Н., Облиенко М. В. Прогнозирование пожароопасных свойств органических соединений с применением дескрипторов //Пожарная безопасность. - 2013.-№ 1. -С. 70-73.

7. ГОСТ 12.1.044-89*. Система стандартов безопасности труда. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения. -Введ. 01.01.1991. - М.: Стандартинформ, 2006. - 100 с.

8. Ngoc Lan Mai, Yoon-Mo Koo. Quantitative prediction of lipase reaction in ionic liquids by QSAR using COSMO-RS molecular descriptors // Biochemical Engineering Journal. - 2014. - Vol. 87. - P. 33-40. DOI: 10.1016/j.bej.2014.03.010.

9. Varnek A., Fourches D., Hoonakker F., Solov'ev V. P. Substructural fragments: an universal language to encode reactions, molecular and supramolecular structures // Journal of Computer-Aided Molecular Design. -2005.-Vol. 19,No. 9-10. -P. 693-703. DOI: 10.1007/s10822-005-9008-0.

10. Baskin I., Varnek A. Building a chemical space based on fragment descriptors // Combinatorial Chemistry & High Throughput Screening. - 2008. - Vol. 11, No. 8. - P. 661-668. DOI: 10.2174/138620708785739907.

11. Корольченко А. Я., Корольченко Д. А. Пожаровзрывоопасность веществ и материалов и средства их тушения : справочник: в 2 ч. - 2-е изд., перераб. и доп. - М. : Пожнаука, 2004. - Ч. I. - 713 с.

12. Корольченко А. Я., Корольченко Д. А. Пожаровзрывоопасность веществ и материалов и средства их тушения : справочник: в 2 ч. - 2-е изд., перераб. и доп. - М. : Пожнаука, 2004. - Ч. II. - 774 с.


Review

For citations:


Korolev D.S., Kalach A.V., Kargashilov D.V. FORECASTING OF FLASH POINT BY MEANS OF KDS 1.0 NEUROPACKAGE ON THE EXAMPLE OF ESTERS OF OLEIC ACID. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2016;25(3):21-26. (In Russ.) https://doi.org/10.18322/PVB.2016.25.03.21-26

Views: 360


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)