Preview

SIMPLIFIED CALCULATION OF HEAT ON A FLAT SURFACE

https://doi.org/10.18322/РVB.2016.25.03.5-14

Abstract

When building physical models of many processes are used information about the magnitude of the temperature of the structure surface and the heat flux into the design, you must have the foreseeable analytical expressions. Existing solutions to the heat equation for plates and semi-infinite space, hard understand as expressed through an infinite series of special functions or tabulated. Unfortunately, members of series are defined by the tables or graphes. In the proposed work an attempt was made to get the final expressions to determine the surface temperature and the magnitude of the heat flow directed inside design. These expressions must include values that define the decision problem - the initial and boundary conditions. If the task addresses the following options: • design is thermally thin body, when the Bio number is small (Bi < 0.14); • design is thermally thick body, when the Fourier number Fo < 0.5, the condition means that the thermal perturbation has not reached the opposite border; • body is not thermally thick, as Fo > 0.5, but is not thermally thin, because Bi > 0.14. For a thermally thin body design temperature thickness has a constant value. For thermally thick body Fo < 0.5 there are defined three ranges of surface temperature determination. The first mode is determined by the product of FoBi < 0.01 (ofFo < 0.5). The second mode is limited by the condition of 0.01 < FoBi2 < 8, a third mode is realized under condition FoBi2 <8. As result there are derived the final expressions for determining surface temperature and heat flux inside the structure, which includes initial and boundary conditions, and does not require other additional information.

About the Authors

V. A. Gorev
Moscow State University of Civil Engineering
Russian Federation


M. V. Fomina
Moscow State University of Civil Engineering
Russian Federation


References

1. СП 23-101-2004. Проектирование тепловой защиты зданий. - Введ. 01.06.2004. - М. : ФГУП ЦПП, 2004.

2. Rocket J. A., Milke J. A. Conduction of heat in solids // SFPE Handbook of Fire Protection Engineering. - Massachusetts : NFPA, 2002. - P. 1-27-1-43.

3. Лыков А. В. Теория теплопроводности: учеб. пособие для вузов.-М.: Высшая школа, 1967. - 600 с.

4. Исаченко В. П., Осипова В. А., Сукомел А. С. Теплопередача : учеб. для вузов. - М. : Энергия, 1975.-488 с.

5. Варгафтик Н. Б. Справочник по теплофизическим свойствам газов и жидкостей. - М. : Наука, 1972. - 720 с.

6. Федоров В. В., Бочаров Ю. Н., Барашков Р. Л. и др. Методы расчета теплофизических свойств газов и жидкостей. - М. : Химия, 1974. - 248 с.

7. Варнатц Ю., Маас У., Диббл Р. Горение: физические и химические аспекты, моделирование, эксперименты, образование загрязняющих веществ / Пер. с англ. Г. Л. Агафонова; под. ред. П. А. Власова. - М. : Физматлит, 2003. - 352 с.

8. Корольченко А. Я., Корольченко Д. А. Пожаровзрывобезопасность веществ и материалов и средства их тушения : справочник: в 2 ч. - 2-е изд. перераб. и доп. - М. : Пожнаука, 2004. - Ч. I. - 713 с.

9. Ландау Л. Д., Лифшиц Е. М. Статистическая физика. - М. : Наука, 1964. - 567 с.

10. Михеев М. А., Михеева И. М. Основы теплопередачи. - М. : Энергия, 1977. - 344 c.

11. Кириллин В. А., Сычев В. В., Шейндлин А. Е. Техническая термодинамика: учеб. для вузов. - 5-е изд., перераб. и доп. - М. : Изд. дом МЭИ, 2008. - 469 с.

12. Кудинов А. А. Тепломассообмен : учеб. пособие. - М. : ИНФРА-М, 2012. - 375 с.

13. Кутателадзе С. С., Боришанский В. Н. Справочник по теплопередаче. - М.-Л. : Госэнерго-издат, 1958. -414 с.

14. Франк-Каменецкий Д. А. Диффузия и теплопередача в химической кинетике.-М. :Наука, 1987. - 492 с.

15. Carslaw H.S., Jaeger J.C. Conduction ofheat in solids.- Oxford, UK: Oxford University, 1959. - 510c.

16. Rohsenow W. M., Hartnett J. P., Ganic E. N. Handbook ofheat transfer fundamentals. Second Edition. - New York : McGraw-Hill, 1985. - 1440 p.

17. Кошмаров Ю. А. Прогнозирование опасных факторов пожара в помещении : учеб. пособие. - М. : Академия ГПС МВД России, 2000. - 118 с.

18. Корн Г.,Корн Т. Справочник по математике для научных работников и инженеров.-М. :Наука, 1974.- 832 с.

19. Nelson H. E., Forssell E. W. Use of small-scale test data in hazard analysis // Fire Safety Science. - 1994. - Vol. 4. - P. 971-982. DOI: 10.3801/iafss.fss.4-971.

20. Мышкис А. Д. Математика для втузов. Специальные курсы. - М. : Наука, 1971. - 632 с.

21. Казиев М. М., Зубкова Е. В. Алгоритм защиты огнестойких светопрозрачных конструкций при пожаре //Пожары и чрезвычайные ситуации: предотвращение, ликвидация. -2015. -№ 3. - С. 71-77.


Review

For citations:


Gorev V.A., Fomina M.V. SIMPLIFIED CALCULATION OF HEAT ON A FLAT SURFACE. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2016;25(3):5-14. (In Russ.) https://doi.org/10.18322/РVB.2016.25.03.5-14

Views: 362


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)