Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search

Methods of determining of the thermal strength propellant tank of orbital stage rocket with liquid propulsion engine

https://doi.org/10.18322/PVB.2016.25.07.34-47.

Abstract

The present work is devoted to the development of engineering techniques for assessing the explosion of the space launch vehicle orbital stages, after turning off the main liquid propulsion engine, located in a circular orbit at altitudes of 200-1000 km. It is supposed that the unused residue of liquid propellant component in the propellant tank is vaporized by the impact on the structure of the pro¬pellant tank space factors, thus increasing the vapor pressure propellant to values exceeding the design strength of the pro¬pellant tank. Under the current outer space factors mean thermal effect on the orbital stage of the during its orbital motion (direct solar radiation, reflected from the Earth’s solar radiation, the Earth’s own radiation and aerodynamic heat flux). During the practical calculation it is solved a number of problems: the definition of the maximum (finding the orbital stage entirely in the lighted orbit) and the minimum (presence of maximum shaded portion of the orbit) limit of the thermal loading of the propellant orbital stage; the determination of the pressure of the vaporized propellant component vapor in the tank orbital stage (depending on the mass and the boundary conditions of the liquid propellant component placement residue); evaluation of strength tank design orbital stage by increasing its temperature and increased internal pressure caused by the evapora¬tion of the propellant component residue. To assess the explosion of the propellant tank orbital stage of the space launch vehicle with the main liquid propellant engine it is analysed the criteria in the form of ratios of ring voltage of a propellant tank structure to the value of the tensile strength, while the corresponding values of the lower and upper boun-daries of the thermal load. The calculations showed average values of absorbed heat flux at maximum thermal loading (the pro-pellant tank surface is exposed to the total direct solar radiation, reflected from the Earth’s solar radiation, intrinsic radiation of the Earth and aerodynamic heat flux throughout the orbit) and minimum thermal loading (the propellant tank surface orbital stage is in Earth’s shadow). The pre¬sence of residual unused liquid oxygen tank into the space launch vehicle “Zenit” in an amount up to 3 % of the initial filling of the tank does not contribute to exposure.

About the Authors

В. Трушляков
Омский государственный технический университет
Russian Federation


К. Жариков
Омский государственный технический университет
Russian Federation


References

1. Mannan S. Lees’ Loss Prevention in the Process Industries. Hazard Identification, Assessment and Control. - 3rd ed. - Oxford : Butterworth-Heinemann, 2004. - Vol. 1. - 3680 p. DOI: 10.1016/B978-0-7506-7555-0.50272-3.

2. Si-Ning Chen, Jin-Hua Sun, Guan-Quan Chu. Small scale experiments on boiling liquid expanding vapor explosions: Vessel over-pressure // Journal of Loss Prevention in the Process Industries. - 2007. - Vol. 20, Issue 1. - P. 45-51. DOI: 10.1016/j.jlp.2006.09.002.

3. Козлитин А. М. Развитие теории и методов количественной оценки риска аварий сложных технических систем // Вестник Саратовского государственного технического университета. - 2011. - Т. 4, № 3(61).- С. 115-124.

4. Update of the IADC space debris mitigation guidelines. IADC-11-02. - Beijing, May 2014.

5. Weiguo Li, Xianhe Zhang, Haibo Kou, Ruzhuan Wang, Daining Fang. Theoretical prediction of temperature dependent yield strength for metallic materials // International Journal of Mechanical Sciences. - 2016. - Vol. 105.- P. 273-278. DOI: 10.1016/j.ijmecsci.2015.11.017.

6. Takase K. et al. Demonstration for upper stage controlled re-entry experiment by H-IIB launch vehicle // Mitsubishi Heavy Industries Technical Review. - 2014. - Vol. 48, No. 4. - P. 11-16.

7. Ariane-5, Data Relating to Flight VA205 by Hugues Lanteri. Kourou, 2012. URL: http://www.spaceairbusds.com/media/document/flight-va205/atv3.pdf (дата обращения: 11.12.2015).

8. Меры, принимаемые космическими агентствами для снижения темпов образования космического мусора или его потенциальной опасности : доклад секретариата / Комитет по использованию космического пространства в мирных целях, 21.11.1995. URL: http://www.unoosa.org/pdf/reports/ac105/AC105/620R.pdf (дата обращения: 15.01.2016).

9. Меры, принимаемые космическими агентствами для снижения темпов образования космического мусора или его потенциальной опасности : доклад секретариата / Комитет по использованию космического пространства в мирных целях, 13.12.1996. URL: http://www.unoosa.org/pdf/reports/ac105/AC105/663R.pdf (дата обращения: 22.01.2016).

10. Glazunov A. A., Goldin V. D., Zverev V. G., Ustinov S. N., Finchenko V. S. Aerothermodynamics calculation of thermal destruction of “Fregat” upper stage at descent in the Earth’s atmosphere // Thermophysics and Aeromechanics.-2013.-Vol. 20, Issue 2.-P. 195-209. DOI: 10.1134/s0869864313020066.

11. Sim H., Kim K. Reentry survival analysis of tumbling metallic hollow cylinder // Advances in Space Research. - 2011.- Vol. 48, No. 5. - P. 914-922. DOI: 10.1016/j.asr.2011.04.036.

12. Tewari A. Entry trajectory model with thermomechanical breakup // Journal of Spacecraft and Rockets. - 2009. - Vol. 46, No. 2. - P. 299-306. DOI: 10.2514/1.39651.

13. Ailor W. H., Patera R. P. Spacecraft re-entry strategies: meeting debris mitigation and ground safety requirements // Proceedings of the Institution of Mechanical Engineers / Journal of Aerospace Engineering. -2007.-Part G.-Vol. 221, No. 6.-P. 947-953. DOI: 10.1243/09544100JAERO199.

14. Rykhlova L. V., Bagrov A. V., Barabanov S. I., Kasimenko T. V., Mikisha A. M., Smirnov M. A. Search and observations of space debris and near earth objects at Inasan // Advances in Space Research. -2001. - Vol. 28, No. 9. - P. 1301-1307. DOI: 10.1016/S0273-1177(01)00401-X.

15. Fritsche B., Klinkrad H., Kashkovsky A., Grinberg E. Spacecraft disintegration during uncontrolled atmospheric re-entry // Acta Astronautica. - 2000. - Vol. 47, Issues 2-9. - P. 513-522. DOI: 10.1016/s0094-5765(00)00090-4.

16. Lips T., Fritsche B. A comparison of commonly used re-entry analysis tools // Acta Astronautica. -2005. - Vol. 57, Issues 2-8. - P. 312-323. DOI: 10.1016/j.actaastro.2005.03.010.

17. Rykhlova L. V., Kasimenko T. V., Mikisha A. M., SmirnovM.A. Explosions in the geostationary orbit //Advances in Space Research.-1997.-Vol. 19, No. 2.-P. 313-319. DOI: 10.1016/S0273-1177(97)00014-8.

18. Lips T., Fritsche B., Koppenwallner G., Klinkrad H. Spacecraft destruction during re-entry - latest results and development of the SCARAB software system // Advances in Space Research.-2004.-Vol. 34, No. 5. - P. 1055-1060. DOI: 10.1016/j.asr.2003.01.012.

19. Машиностроение : Энциклопедия. Т. II-3. Цветные металлы и сплавы. Композиционные металлические материалы / Под общ. ред. И. Н. Фридляндера.-М. : Машиностроение, 2001.-880 c.

20. Гольденвейзер А. Л. Теория упругих тонких оболочек. - М. : Наука, 1976. - 512 с.

21. Baker W. E., Cox P. A., Westine P. S., Kulesz J. J., Strehlow R. A. Explosion hazards and evaluation. Amsterdam - Oxford - New York : Elsevier Scientific Publishing Company, 1983. - 807 p. DOI: 10.1016/0010-2180(85)90099-9.

22. РБГ-05-039-96. Руководство по анализу опасности аварийных взрывов и определению параметров механического действия. - М. : НТЦ ЯРБ Госатомнадзор России, 2000. - 80 с.

23. Bubbico R., Mazzarotta B. Analysis and comparison of calculation methods for physical explosions of compressed gases // 11th International Conference on Chemical and Process Engineering.-2013.-Vol. 32, No. 11. - P. 81-90. DOI: 10.3303/CET1332023.

24. Викторов М. М. Методы вычисления физико-химических величин и прикладные расчеты.-Л. : Химия, 1977.- 360 с.

25. Рид Р., Праусниц Дж., Шервуд Т. Свойства газов и жидкостей : справочное пособие.-Л., 1982. - 592 с.

26. Теория тепломассообмена / Под ред. А. И. Леонтьева. - М. : Высшая школа, 1979. - 495 c.

27. Meseguer J., Perez-Grande I., Sanz-Andres A. Spacecraft thermal control. - Oxford - Cambridge - Philadelphia - New Delhi : Woodhead Publishing, 2012. - P. 381.

28. СкляровЮ.А., Фомина Н. В., Котума А. И., Семенова Н. В. Альбедо, поглощенная солнечная радиация и уходящая длинноволновая радиация по материалам атласов NASA США // Известия Саратовского университета. - 2009. - № 1. - С. 44-55.

29. Основы теории полета космических аппаратов / Под ред. Г. С. Нариманова. - М. : Машиностроение, 1972.- 608 с.

30. NASA-STD-8719.14A. Process for Limiting Orbital Debris.-Washington, D. C. : NASA, Office of Safety and Mission Assurance, 2012. - 74 p.

31. Lochan R., Adimurthy V., Kumar K. Separation dynamics of ullage rockets // Journal of Guidance, Control, and Dynamics. - 1994.- Vol. 17, No. 3. - P. 426-434. DOI: 10.2514/3.21217.

32. Jeyakumar D., Biswas K. K., Nageswara-Rao B. Stage separation dynamic analysis of upper stage of a multistage launch vehicle using retro rockets // Mathematical and Computer Modelling.-2005.- Vol. 41, Issue 8-9. - P. 849-866. DOI: 10.1016/J.MCM.2005.02.001.

33. Alessi E. M. The reentry to Earth as a valuable option at the end-of-life of Libration Point Orbit missions //Advances in Space Research.-2015.-Vol. 55, No. 12.-P. 2914-2930.DOI:10.1016/J.ASR.2015.03.012.

34. Многоканальный мониторинговый телескоп ММТ. Результаты анализа фотометрической информации по космическим объектам на околоземных орбитах. Январь 2016 года : информационноаналитический отчет. URL: http://astroguard.ru/mmtpublic.html (дата обращения: 03.02.2016).

35. Anselmo L., Pardini C. Ranking upper stages in low Earth orbit for active removal // Acta Astronautica. - 2016. - Vol. 122, Issues 19-27.- P. 19-27. DOI: 10.1016/J.ACTAASTRO.2016.01.019.


Review

For citations:


 ,   Methods of determining of the thermal strength propellant tank of orbital stage rocket with liquid propulsion engine. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2016;25(7):34-47. (In Russ.) https://doi.org/10.18322/PVB.2016.25.07.34-47.

Views: 408


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)