Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search

Experimental study of features of water droplets evaporation at the moving consistently through high-temperature com-bustion products

https://doi.org/10.18322/PVB.2016.25.07.6-15.

Abstract

Introduction. The paper presents the results of experimental investigation of cross impact of water droplets in a flow while moving and evaporation in a medium of high-temperature gases, which cor¬respond in temperature to the typical combustion products due to a fire. We considered the sequential schemes of droplet movement and the schemes when the trajectories of droplet movement diverged relative to each other. Materials and methods. The area full of high-temperature (about 1000 K) combustion products was created using the model of fire source (hollow cylinder of height h = 1 m and diameter d = 0.15 m). Droplets moved in the opposite direction of the gas medium. In experiments we applied the tools of high-speed video recording (up to 106 frames per second) and also the optical diagnostic methods of two-phase gas flows (Particle Image Velocimetry, Particle Tracking Velocimetry, Stereoscopic Particle Image Velocimetry, Shadow Photography). Results. In experiments the decrease in typical radius R of water droplets and change in distance Ld between neighboring droplets was the main defining characteristics. From the experiments we deter-mined the velocity variation of droplets moving sequentially, distance, at which the subsequent droplet catches the next one in a flow, and there is a coalescence. The influence of initial distance between neighboring droplets in a flow on their approximation while movement in a channel with high-¬temperature gases at various values of initial speed of droplet was investigated. Also, we determined the impact scale of the vapor trace forming from evaporation of droplets moving ahead on the eva¬pora¬tion intensity of the next droplets. It was revealed that heating and evaporation of the next droplets in a vapor-gas trace of preceding ones are less intense. The influence of initial water temperature on the approach and the coalescence of droplets moving subsequently in a flow of high-temperature gases were determined. It was illustrated that the previous heat-up of water accelerates the droplet coales¬cence in a flow under conditions of relatively short initial distances between droplets. Also, the extreme distances between droplets were defined, in pro-viding which there is a coalescence of droplets when they pass the area of high-temperature combustion products. Conclusions. We illustrated the satisfactory correlation of experimental results with the data of nu¬me¬-rical simulation carried out previously. The theoretical hypothesis about the significant influence of water droplets moving ahead (through high-temperature gases) on the conditions of evaporation and movement of subsequent ones was proved experimentally.

About the Authors

И. Войтков
Национальный исследовательский Томский политехнический университет
Russian Federation


Р. Волков
Национальный исследовательский Томский политехнический университет
Russian Federation


О. Высокоморная
Национальный исследовательский Томский политехнический университет
Russian Federation


П. Стрижак
Национальный исследовательский Томский политехнический университет
Russian Federation


References

1. Корольченко Д. А., Громовой В. Ю., Ворогушин О. О. Применение тонкораспыленной воды для тушения пожаров в высотных зданиях // Вестник МГСУ. - 2011. - № 1-2. - С. 331-335.

2. Соковиков В. В., Тугов А. Н., Гришин В. В., Камышев В. Н. Автоматическое водяное пожаротушение с применением тонкораспыленной воды на электростанциях // Энергетик.-2008.-№ 6. - С. 37-38.

3. Сегаль М. Д. Использование тонкораспыленной воды для повышения противопожарной защиты кабельных сооружений АЭС // Проблемы безопасности и чрезвычайных ситуаций.-2011.- № 4. - С. 61-64.

4. Виноградов А. Г. Методика расчета экранирующих свойств водяных завес // Пожаровзрывобезопасность. - 2014.- Т. 23, № 1. - С. 45-56.

5. Виноградов А. Г. Применение теории затопленных струй к расчету параметров водяных завес // Пожаровзрывобезопасность. - 2014. - Т. 23, № 5. - С. 76-87.

6. Саламов А. А. Современная система пожаротушения “водяной туман” высокого давления // Энергетик. - 2012.- № 3. - С. 16-18.

7. Терпигорьев В. Водяной туман как средство защиты объектов культуры // Алгоритм безопасности. - 2006.- № 5. - С. 18-20.

8. Westerweel J. Fundamentals of digital particle image velocimetry // Measurement Science and Technology.-1997.- Vol. 8, No. 12. - P. 1379-1392. DOI: 10.1088/0957-0233/8/12/002.

9. Akhmetbekov Y. K., Alekseenko S. V., Dulin V. M., Markovich D. M., Pervunin K. S. Planar fluorescence for round bubble imaging and its application for the study of an axisymmetric two-phase jet // Experiments in Fluids. - 2010.- Vol. 48, No. 4. - P. 615-629. DOI: 10.1007/s00348-009-0797-0.

10. Khalighi B., Lee Y. H. Particle tracking velocimetry: an automatic image processing algorithm // Applied Optics. - 1989.- Vol. 28, No. 20. - P. 4328-4332. DOI: 10.1364/AO.28.004328.

11. Maeda M., Kawaguchi T., Hishida K. Novel interferometric measurement of size and velocity distributions of spherical particles in fluid flows // Measurement Science and Technology.-2000.-Vol. 11, No. 12. - Р. L13-L18. DOI: 10.1088/0957-0233/11/12/101.

12. Glover A. R., Skippon S. M., Boyle R. D. Interferometric laser imaging for droplet sizing: a method for droplet-size measurement in sparse spray systems // Applied Optics.-1995.-Vol. 34, No. 36.-P. 8409-8421. DOI: 10.1364/AO.34.008409.

13. Dehaeck S., Van Parys H., Hubin A., Van Beeck J. P. A. J. Laser marked shadowgraphy: a novel optical planar technique for the study of microbubbles and droplets // Experiments in Fluids. - 2009. - Vol. 47, No. 2. - P. 333-341. DOI: 10.1007/s00348-009-0668-8.

14. Волков Р. С., Кузнецов Г. В., Стрижак П. А. Влияние начальных параметров распыленной воды на характеристики ее движения через встречный поток высокотемпературных газов // Журнал технической физики. - 2014.- Т. 84, № 7. - С. 15-23.

15. Волков Р. С., Кузнецов Г. В., Стрижак П. А. Критериальные выражения для условий торможения и последующего уноса капель воды высокотемпературными газами // Журнал технической физики. - 2015.- Т. 85, № 9. - С. 50-55.

16. Волков Р. С., Кузнецов Г. В., Стрижак П. А. Статистический анализ последствий столкновений двух капель воды при их движении в высокотемпературном газовом потоке // Письма в Журнал технической физики. - 2015.- Т. 41, № 17. - С. 53-60.

17. Волков Р. С., Кузнецов Г. В., Стрижак П. А. Особенности испарения двух капель воды, движущихся последовательно через высокотемпературные продукты сгорания // Теплофизика и аэромеханика. - 2014.- Т. 21, № 2. - С. 269-272.

18. Strizhak P. A. Influence of droplet distribution in a “water slug” on the temperature and concentration of combustion products in its wake // Journal of Engineering Physics and Thermophysics. - 2013. - Vol. 86, No. 4. - P. 895-904. DOI: 10.1007/s10891-013-0909-9.

19. Janiszewski J. Measurement procedure of ring motion with the use of high speed camera during electromagnetic expansion // Metrology and Measurement Systems. - 2012. - Vol. 19, No. 2. - P. 797-804.

20. Janiszewski J. Ductility of selected metals under electromagnetic ring test loading conditions // International Journal of Solids and Structures. - 2012. - Vol. 49, No. 7-8. - P. 1001-1008. DOI: 10.1016/j.ijsolstr.2012.01.005.

21. Reyssat É., Chevy F., Biance A.-L., Petitjean L., Quéré D. Shape and instability of free-falling liquid globules //Europhysics Letters.-2007.-Vol. 80, No. 3.-P. 34005.DOI:10.1209/0295- 5075/80/34005.

22. Flock A. K., Guildenbecher D. R., Chen J., Sojka P. E., Bauer H. J. Experimental statistics of droplet trajectory and air flow during aerodynamic fragmentation of liquid drops // International Journal of Multiphase Flow. - 2012.- Vol. 47. - P. 37-49. DOI: 10.1016/j.ijmultiphaseflow.2012.06.008.


Review

For citations:


 ,  ,  ,   Experimental study of features of water droplets evaporation at the moving consistently through high-temperature com-bustion products. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2016;25(7):6-15. (In Russ.) https://doi.org/10.18322/PVB.2016.25.07.6-15.

Views: 433


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)