Пожаровзрывобезопасность/Fire and Explosion Safety

Расширенный поиск



An experimental installation for small-scale modeling of thermal and gas dynamics of fire in conventionally sealed volume during the combustion of solid and liquid combustible substances and materials is created. The plant consists of a combustion chamber and the exposure chamber in which there are measured the current mass of combustible material, the temperature of heat source, the mean volume temperature and mean volume gas concentrations in the gas mixture. Analytical dependence for calculating the mean volume density of carbon monoxide is proposed. It is shown that the above mentioned density does not depend on the properties of the combustible material, sizes of the room and the area of the exposed surface of the fuel material. Thus, the above relationship is valid in a small-scale and large-scale conditions of fires in the room. Experimental dependences between mean volume density of carbon monoxide and the mean volume temperature are obtained. Experimental dependences of the coefficients of the specific release of carbon monoxide and specific gasification mass rates from testing time during the combustion of coniferous wood, transformer oil and PVC sheath cables are received. It was found that the above coefficients are substantially unsteady. A comparison of experimental results with those of literary sources and the analytical solution of the integral model is presented. The essential difference between the obtained values of LCO and the provided ones in the literature can be explained by differences in the experimental conditions. Also the chemical compositions of the PVC sheath cables and transformer oil in this paper and in the published ones may differ significantly from each other. Furthermore, in these experiments there was not measured humidity of coniferous wood materials. It is shown that the values of the specific release coefficient and density of carbon monoxide are insignificant in the initial stage of burning when the oxygen concentration remains practically unchanged. By reducing the concentration of the oxygen emission of carbon monoxide increases dramatically and the density of carbon monoxide quickly reaches its critical value. It was found that the average value of the specific release coefficient of carbon monoxide depends essentially on the averaging period of the time. Averaging value can be changed in the case of coniferous wood materials in 2.63 times, for cable sheathing PVC - 1.8 times and transformer oil - 5.1 times.

Об авторах

С. В. Пузач
Академия ГПС МЧС России

Р. Г. Акперов
Академия ГПС МЧС России

Список литературы

1. Белешников И. Л. Судебно-медицинская оценка содержания цианидов в органах и тканях людей, погибших в условиях пожара : автореф. дис.. канд. мед. наук. - СПб., 1996. - 24 с.

2. Иличкин В. С. Токсичность продуктов горения полимерных материалов: Принципы и методы определения. - СПб. : Химия, 1993. - 136 с.

3. NFPA 269. Standard test method for developing toxic potency data for use in fire hazard modeling. - Quincy, MA : National Fire Protection Association, 2003. - P. 269-1-269-18.

4. Пузач С. В., Смагин А. В., Лебедченко О. С., Абакумов Е. С. Новые представления о расчете необходимого времени эвакуации людей и об эффективности использования портативных фильтрующих самоспасателей при эвакуации на пожарах. - М.: Академия ГПС МЧС России, 2007. - 222 с.

5. Пузач С. В. Методы расчета тепломассообмена при пожаре в помещении и их применение при решении практических задач пожаровзрывобезопасности. - М. : Академия ГПС МЧС России, 2005. -336 с.

6. NFPA 92B. Technical Committee Reports - Technical Guide for Smoke Management Systems in Malls, Atria and Large Areas. - Quincy, MA : National Fire Protection Association, 1990.

7. McGrattan K., Klein B., Hostikka S., Floyd J. Fire Dynamics Simulator (Version 6). NIST Special Publication 1018. - Gaithersburg : National Institute of Standards and Technology, 2013. - 149 p.

8. Welch S., Rubini P. SOFIE: Simulation of Fires in Enclosures. User Guide. - United Kingdom, Cran-field : Cranfield University, 1996. - 340 p.

9. Кошмаров Ю. А. Прогнозирование опасных факторов пожара в помещении. - М. : Академия ГПС МВД России, 2000. - 118 с.

10. Пузач С. В., Пузач В. Г., Доан В. М. К определению показателя токсичности продуктов горения горючих веществ и материалов в помещении // Пожаровзрывобезопасность. - 2011. - Т. 20, №4.- С. 4-13.

11. Пузач С. В., Сулейкин Е. В. Новый теоретико-экспериментальный подход к расчету распространения токсичных газов при пожаре в помещении // Пожаровзрывобезопасность. - 2016. - Т. 25, № 2. - С. 13-20. DOI: 10.18322/PVB.2016.25.02.13-20.

12. Tanaka Т., Yamada S. BRI2002: Two layer zone smoke transport model. Chapter 1. Outline of the model // Fire Science and Technology. - 2004. - Vol. 23, No. 1. - P. 1-44. DOI: 10.3210/fst.23.1.

13. Hansell G. O., Morgan H. P. Design approaches for smoke control in atrium buildings. Report BRE 258. - UK, Garston : Building Research Establishment, 1994. - 57 p.


Для цитирования:

Пузач С.В., Акперов Р.Г. . Пожаровзрывобезопасность/Fire and Explosion Safety. 2016;25(5):18-25. 10.18322/PVB.2016.25.05.18-25

For citation:

Puzach S.V., Akperov R.G. EXPERIMENTAL DETERMINATION OF THE SPECIFIC COEFFICIENT OF RELEASE OF CARBON MONOXIDE DURING A FIRE IN THE ROOM. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2016;25(5):18-25. (In Russ.) 10.18322/PVB.2016.25.05.18-25

Просмотров: 360

Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.

ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)