Particle size influence on the aluminum combustion dynamics in 1-m3 chamber
https://doi.org/10.22227/0869-7493.2022.31.05.6-13
Abstract
Introduction. The results of a standard study of the explosibility of aluminum air suspensions (AAS) can contribute to the development of AAS combustion physics. In particular, a complex of information about the polydispersity and of the AAS low explosion limit values in a 1-m3 chamber made it possible to determine the maximum particle size of the explosive fraction of a polydisperse sample d*m,t ≈ 40–50 µm (Poletaev, 2014). In the present work, a relationship is established between the AAS combustion dynamics in a 1-m3 chamber and persion. The dispersity of sample particles is described by the mass-average particle size of its explosive fraction (d*50), in contrast to the works of other researchers who use the mass-average size of all particles (d50).
Initial data. Known information about the dispersity and explosion parameters of 15 aluminum samples studied in a 1-m3 chamber was used. The continuous particle size distribution functions necessary for calculating d*50 were represented by the Rosin – Rammler distributions filling the gaps between the discrete data of the sieve analysis of the samples.
Combustion dynamics. The dynamics of AAS turbulent combustion in a 1-m3 chamber is represented by the maximum air suspension burn-up rate Ub. Ub was calculated using the formula (Kumar, 1992) intended for gas-air mixtures by substituting the AAS explosion parameters into this formula.
Results and its discussion. A plot of the d*50 Ub complex versus d*50 is shown. The average value of the complex (≈ 33 µm·m/s) is constant in the range 10 ≤ d*50 ≤ 35 µm. The latter is typical for the product of the particle size and the normal velocity of the laminar flame in AAS (Ben Moussa, 2017) and indicates the similarity of the effect of particle dispersion on the dynamics of turbulent and laminar combustion of AAS.
Conclusions. The dispersion of an explosive polydisperse aluminum sample is determined by the average particle size of the explosive fraction of the sample d*50. The similarity of the combustion patterns indicates a relationship between the mechanisms of laminar and turbulent flame propagation in AAS.
About the Author
N. L. PoletaevRussian Federation
Nikolay L. POLETAEV, Dr. Sci. (Eng.), Leading Researcher
VNIIPO, 12, Balashikha, Moscow Region, 143903
ID RISC:1093620
References
1. Yuan Z., Khakzad N., Khan F., Amyotte P. Dust explosions: A threat to the process industries. Process Safety and Environmental Protection. 2015; 98:5771. DOI: 10.1016/j.psep.2015.06.008
2. Marmo L., Riccio D., Danzi E. Explosibility of metallic waste dusts. Process Safety and Environmental Protection. 2017; 107:6980. DOI: 10.1016/j.psep.2017.01.011
3. Eckhoff R.K. Dust explosions in the process industries. 3rd ed. Gulf Professional Publishing/Elsevier, Boston, 2003; 720.
4. Julien P., Vickery J., Whiteley S., Wright A., Goroshin S., Bergthorson J.M., Frost D.L. Effect of scale on freely propagating flames in aluminum dust clouds. Journal of Loss Prevention in the Process Industries. 2015; 36:230236. DOI: 10.1016/j.jlp.2014.12.022
5. Krietsch A., Reyes R.M., Kristen A., Kadoke D., Abbas Z., Krause U. Ignition temperatures and flame velocities of metallic nanomaterials. Journal of Loss Prevention in the Process Industries. 2021; 71:104482. DOI: 10.1016/j.jlp.2021.104482
6. Zhang S., Bi M., Jiang H., Gao W. Synergistic inhibition of aluminum dust explosion by gas–solid inhibitors. Journal of Loss Prevention in the Process Industries. 2021; 71:104511. DOI: 10.1016/j.jlp.2021.104511
7. Li G., Yang H.X., Yuan C.M., Eckhoff R.K. A catastrophic aluminiumalloy dust explosion in China. Journal of Loss Prevention in the Process Industries. 2016; 39:121130. DOI: 10.1016/j.jlp.2015.11.013
8. Taveau J., Hochgreb S., Lemkowitz S., Roekaerts D. Explosion hazards of aluminum finishing operations. Journal of Loss Prevention in the Process Industries. 2018; 51:8493. DOI: 10.1016/j.jlp.2017.11.011
9. Ben Moussa R., Proust C., Guessasma M., Saleh K., Fortin J. Physical mechanisms involved into the flame propagation process through aluminum dustair clouds: A review. Journal of Loss Prevention in the Process Industries. 2017; 45:928. DOI: 10.1016/j.jlp.2016.11.010
10. Poletaev N.L. Experimentcalculated estimat ing of the maximum particle size of explosive monodisperse dustair mixture. Pozharovzryvo bezopasnost/Fire and Explosion Safety. 2014; 23(9):1526. URL: https://www.elibrary.ru/item.asp?id=22678225 (rus).
11. Santandrea A., Pacault S., Perrin L., Vignes A., Dufaud O. Nanopowders explosion: Influence of the dispersion characteristics. Journal of Loss Prevention in the Process Industries. 2019; 62:103942. DOI: 10.1016/j.jlp.2019.103942
12. Wang Q., Fang X., Shu C.M., Wang Q., Sheng Y., Jiang J., Sheng Z. Minimum ignition temperatures and explosion characteristics of micronsized aluminium powder. Journal of Loss Prevention in the Process Industries. 2020; 64:104076. DOI: 10.1016/j.jlp.2020.104076
13. Zhang J., Sun L., Sun T., Zhou H. Study on explosion risk of aluminum powder under different dispersions. Journal of Loss Prevention in the Process Industries. 2020; 64:104042. DOI: 10.1016/j.jlp.2019.104042
14. Castellanos D., CarretoVazquez V.H., Mashuga C.V., Trottier R., Mejia A.F., Mannan M.S. The effect of particle size polydispersity on the explosibility characteristics of aluminium dust. Powder Technol. 2014; 254:331337. DOI: 10.1016/j.powtec.2013.11.028
15. Tascon A. Influence of particle size distribution skewness on dust explosibility. Powder Technol. 2018; 338:438445. DOI: 10.1016/j.powtec.2018.07.044
16. Scholl E.W., Reeh D., Wiemann W. et al. Brenn – und Explosions – Kenngrossen von Stauben. SFT-Report. 2. 279:100. (ger).
17. Clouthier M.P., Taveau J.R., Dastidar A.G., Morrison L.S., Zalosh R.G., Ripley R.C. et al. Iron and aluminum powder explosibility in 20L and 1m3 chambers. Journal of Loss Prevention in the Process Industries. 2019; 62:103927. DOI: 10.1016/j.jlp.2019.103927
18. Kouzov P.A. Fundamentals of the analysis of the disperse composition of industrial dusts and crushed materials. 3th ed. Leningrad, Himiya Publ, 1987; 264.
19. Kumar R.K., Bowles E.M., Mintz K.J. Largescale dust explosions experiments to determine the effects of scaling on explosion parameters. Combustion and Flame. 1992; 89:320-332. DOI: 10.1016/00102180(92)90018K
20. Zeldovich Ia.B., Barenblatt G.I., Librovich V.B., Makhviladze G.M. The mathematical theory of combustion and explosions. Consultants Bureau. New York, 1985:600. DOI: 10.1007/9781461323495
Review
For citations:
Poletaev N.L. Particle size influence on the aluminum combustion dynamics in 1-m3 chamber. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2022;31(5):6-13. (In Russ.) https://doi.org/10.22227/0869-7493.2022.31.05.6-13