Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search

Development and application of synthetic NP dispersions to prevent and extinguish forest and peat fires (Review)

https://doi.org/10.22227/PVB.2020.29.06.5-27

Abstract

Introduction. The analysis of flame retardants and extinguishing agents used for preventing and extinguishing fires in an ecosystem is carried out. It is shown that at present there are no weatherproof, environmentally friendly and cost effective extinguishing agents capable of stopping wood and peat burning.
Purpose and objectives. Development of cost effective and environmentally friendly synthetic agents capable of both flame retarding and extinguishing natural combustible materials.
Materials and methods. Synthetic dispersions of ammonium phosphates of two- and three-valence metals, as well as wood and peat fireproofed by them are the object of the study. Physical and chemical properties of synthesis products in comparison with their fire retarding efficiency are examined. Fireproofing, fire extinguishing, as well as physical and chemical properties of synthesized products are determined using GOST-regulated methods of thermal and chemical analysis, scanning electron microscopy and original methods.
Results and discussion. The formulation of Kompleksil synthetic compound effective in extinguishing and fireproofing wood and peat is optimized using a full factorial experiment. At the same time, the inflow of volatile nitrogen containing products into the gaseous phase is identified as the dominating burning inhibition process common for natural combustible materials. The weather resistance (preservation of fireproof properties in respect of forest combustible materials at 79 mm precipitation), forest and environment enhancement (improvement of mineral nutrition conditions and growth of forest plant communities) properties of Kompleksil compound are identified.
Conclusions. A cost effective synthetic compound based on natural mineral materials showing fireproofing and extinguishing efficiency when protecting forest combustible materials and peat is developed. This compound was tested in the process of extinguishing real wildfires; its weather resistance is identified, and the positive response of forest plant communities to the application of this multiple action compound is registered. The use of Kompleksil allows to reduce time expenditures and fire extinguishing agent consumption when extinguishing wildfires, which significantly reduces material damage.

About the Authors

V. V. Bogdanova
Research Institute for Physical Chemical Problems of the Belarusian State University
Belarus

Valentina V. BOGDANOVA, Dr. Sci. (Chem.), Professor, Head of Extinguishing Materials Laboratory

ID RISC: 528477; Scopus Author ID: 7005614283

14 Leningradskaya St., Minsk, 220006



O. I. Kobets
Research Institute for Physical Chemical Problems of the Belarusian State University
Belarus

Olga I. KOBETS, Cand. Sci. (Chem.), Leading Researcher, Extinguishing Materials Laboratory

ID RISC: 1043455

14 Leningradskaya St., Minsk, 220006



References

1. Gutsev N.D., Mikhailova N.V., Korchunova I.Yu. The results of field tests of new fire extinguishing compositions. Proceedings of the Saint Petersburg Forestry Research Institute. 2013; 4:40-52. URL: http://journal.spb-niilh.ru/pdf/4-2013/spbniilh-proceedings-4-2013-4.pdf (rus).

2. Abduragimov I.M. Once again about the state problem of extinguishing of large forest fires (in Russia and all over the world). Pozharovzryvobezopasnost/Fire and Explosion Safety. 2012; 21(2):5-10. URL: https://www.elibrary.ru/item.asp?id=17829837 (rus).

3. Abduragimov I.M. Forest fire can’t be destroyed by bombing. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2012; 21(2):64-68. URL: https://www.elibrary.ru/item.asp?id=17829846 (rus).

4. Popescu C.M., Pfriem A. Treatments and modification to improve the reaction to fire of wood and wood based products — An overview. Fire and Materials. 2020; 44(1):100-111. DOI: 10.1002/fam.277

5. Vakhitova L.N. Fire retardant nanocoating for wood protection. Nanotechnology in Eco-efficient Construction. 2nd ed. Elsevier, 2019; 361-391. DOI: 10.1016/b978-0-08-102641-0.00016-5

6. Grishin A.M., Yakimov A.S. Mathematical modelling of thermophysical processes at peat firing and smoldering. Thermophysics and Aeromechanics. 2010; 17(1):137-153. DOI: 10.1134/S0869864310010166

7. Subbotin A.N. Special features of propagation of peat fire. Journal of Engineering Physics and Thermophysics. 2003; 76(5):1145-1153. DOI: 10.1023/B:JOEP.0000003233.96639.ff

8. Gani A., Naruse J. Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renewable energy. 2007; 32(4):694-661. DOI: 10.1016/j.renene.2006.02.017

9. Filkov A.I. Physical and mathematical modeling of the occurrence of natural fires. Tomsk, Tomsk State University Publishing House, 2014; 15-207. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000507638 (rus).

10. Grishin A.M. General mathematical models of forest and peat fires and their applications. Mechanical successes. 2002; 1:41-49. (rus).

11. Aseeva R.M., Serkov B.B., Sivenkov A.B. Combustion of wood and its fire hazard properties. Moscow, Academy of State Fire Service of the MF Russia, 2010; 1-160. (rus).

12. Aleshina A.A., Glazkova S.V., Lugovskaya L.A. Modern ideas about the structure of cellulose (review). Khimija Rastitel’nogo Syr’ja/Chemistry of vegetable raw materials. 2001; 1:5-36. URL: https://www.elibrary.ru/item.asp?id=9337129 (rus).

13. Lishtvan I.I., Kaputsky F.N., Yanuta Yu.G., Abramets A.M., Navosha Yu.Yu. The structure of peat humic acid fractions. Proceedings of the National Academy of Sciences of Belarus, Chemical Series. 2005; 2:108-113. URL: https://www.elibrary.ru/item.asp?id=29021742 (rus).

14. Gyulmaliev A.M., Gagarin S.G., Golovin G.S. The structure and properties of the organic matter of fossil fuels. Solid Fuel Chemistry. 2004; 38(6):1-22.

15. Leroy-Cancellieri V., Cancellieri D., Leoni E., Simeoni A., Filkov A.I. Energetic potential and kinetic behavior of peats. Journal of Thermal Analysis and Calorimetry. 2014; 117(3):1497-1508. DOI: 10.1007/s10973-014-3912-2

16. Kasymov D.P. Experimental investigation of the deepening of the combustion front into peat layers different in botanical composition. Journal of Engineering Physics and Thermophysics. 2017; 90(1):241-246. DOI: 10.1007/s10891-017-1559-0

17. Loskutov S.R., Shapchenkova O.A., Aniskina A.A. Thermal analysis of wood of the main tree species of central Siberia. Sibirskij Lesnoj Zhurnal (Siberian Journal of Forest Science). 2015; 6:17-30. DOI: 10.15372/SJFS20150602 (rus).

18. Antal M.J.Jr., Varhegyi G. Cellulose pyrolysis kinetics: the current state of knowledge. Industrial & Engineering Chemistry Research. 1995; 34(3):703-717. DOI: 10.1021/ie00042a001

19. Aseeva R.M., Serkov B.B., Sivenkov A.B. Combustion and fire hazard of wood. Pozharovzryvobezopasnost/ Fire and Explosion Safety. 2012; 21(2):19-32. URL: https://www.elibrary.ru/item.asp?id=17326710 (rus).

20. Tarnovskaya L.I. Changes in the chemical composition of humic acids in the process of peat thermolysis. Solid Fuel Chemistry. 1994; 4-5:33-39. (rus).

21. Chukhareva N.V., Maslov S.G. Adsorption properties of thermally modified peat and activated carbons obtained on its basis. Khimija Rastitel’nogo Syr’ja/Chemistry of vegetable raw materials. 2011; 1:169-174. URL: https://www.elibrary.ru/item.asp?id=15859232 (rus).

22. Lishtvan I.I., Korol’ N.T. The main properties of peat and methods for their determination. Minsk, Nauka i tekhnika Publ., 1985; 168. (rus).

23. Freitas J.С., Banagamba T.J., Emmerich F.G. 13C high-resolution solid-state NMR study of peat carbonization. Energy Fuels. 1999; 13(1):53-59. DOI: 10.1021/ef980075c

24. Mazalov Yu.A., Meleshko V.Yu., Pavlovets G.Ya. Modeling and basics of regulation of the combustion process of heterogeneous condensed systems. Moscow, Military Academy of Strategic Missile Forces named after Peter the Great, 2001; 291. (rus).

25. Bobkov S.A., Baburin A.V., Komrakov P.V. Physicochemical bases of development and extinguishing of fires. Moscow, Academy of State Fire Service EMERCOM of Russia, 2014; 174. URL: https://academygps.ru/upload/iblock/a9a/a9a75968da58abd69a9d9578481b96f6.pdf (rus).

26. Khoroshavin L.B., Medvedev O.A., Belyakov V.A., Mikheeva E.V., Rudkov V.S., Baitimirova E.A. Peat: peat fire, peat extinguishing and peat composites. Moscow, FGBU VNII GOChS (FC), 2013; 74-172. URL: https://www.elibrary.ru/item.asp?id=19421097 (rus).

27. Abduragimov I.M. The problem of extinguishing large forest fires and large-scale fires of solid combustible materials in buildings. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2012; 21(2):69-74. URL: https://www.elibrary.ru/item.asp?id=17829847 (rus).

28. Weil E.D. Fire-protective and flame-retardant coatings — A state-of-the-art review. Journal of Fire Sciences. 2011; 2(3):259-296. DOI: 10.1177/0734904110395469

29. Aseeva R.M., Zaikov G.E. Combustion of polymeric materials. Moscow, Nauka Publ., 1981; 280. (rus).

30. Liodakis S., Tsapara V., Agiovlasitis I.P., Vorisis D. Thermal analysis of Pinus sylvestris L. wood samples treated with a new gel–mineral mixture of short- and long-term fire retardants. Thermochimica Acta. 2013; 568:156-160. DOI: 10.1016/j.tca.2013.06.011

31. Tarakhno A.V., Sharshanov A.Ya. Physicochemical bases of water use in fire fighting. Kharkov, Acad. citizen protection of Ukraine, 2004; 252. (rus).

32. Liping Li, Hongdan Hu, Haiqing Hu. Effect of ammonium polyphosphate modified with 3-(methylacryloxyl) propyltrimethoxy silane on the flammability and thermal degradation of pine-needles. Polymers and Polymer Composites. 2014; 22(9):837-842. DOI: 10.1177/096739111402200911

33. Lobanov F.I. Utilization of polymer materials in fire extinguishing process Lobanov. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2004; 1:64-69. URL: https://www.elibrary.ru/item.asp?id=17868664 (rus).

34. Dauengauer S.A. Fire extinguishing with fine-dispersed water: mechanism, characteristics, perspectives. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2004; 6:78-81. URL: https://cyberleninka.ru/article/n/fire-extinguishing-with-fine-dispersed-water-mechanism-characteristics-perspectives (rus).

35. Brushlinsky N.N., Meshalkin E.A., Usmanov M.Kh., Semenov V.P., Solov’ev D.V., Stetsyuk V.F. et al. Evaluation of the effectiveness of extinguishing fires of solid combustible materials and substances in an open space using fire protection devices. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2003; 3:42-46. URL: https://cyberleninka.ru/article/n/otsenka-effektivnosti-tusheniya-pozharov-tverdyh-goryuchih-materialov-i-veschestv-na-otkrytom-prostranstve-pri-ispolzovanii (rus).

36. Baratov A.N., Ivanov E.N. The role of chemical and thermal factors in heterogeneous inhibition of various flames. DAN SSSR / Reports AS SU. 1987; 293(4):892-895. (rus).

37. Antonov D.V., Voitkov I.S., Volkov R.S., Zhdanova A.O., Kuznetsov G.V., Khasanov I.R. et al. Influence of specialized additives on the efficiency of localization of flame burning and thermal decomposition of forest fuel materials. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2018; 27(9):5-15. DOI: 10.18322/PVB.2018.27.09.5-16 (rus).

38. Liodakis S., Antonopoulos I., Tsapara V. Forest fire retardancy evaluation of carbonate minerals using DTG and LOI. Journal of Thermal Analysis and Calorimetry. 2009; 96:203-209. DOI: 10.1007/s10973-008-9378-3

39. Abduragimov I.M., Kuprin G.N., Kuprin D.S. Fast-hardening foams — a new era in fighting forest fires. Fire and emergencies: prevention, elimination. 2016; 2:7-13. DOI: 10.25257/FE.2016.2.7-13 (rus).

40. Kireev A.A., Tarasova G.V., Zhernoklev K.V. Investigation of the mass burning rate of wood with a fire-resistant gel-forming system MgCl2 · Na2O · 2.7 SiO2. Bulletin of the National Technical University “KhPI”. Series: “Informatics and Modeling”. 2006; 43:65-70. (rus).

41. Vinogradov A.V., Kuprin D.S., Abduragimov I.M., Kuprin G.N., Serebriyakov E., Vinogradov V.V. Silica foams for fire prevention and firefighting. Applied Materials and Interfaces. 2016; 8(1):294-301. DOI: 10.1021/acsami.5b08653

42. Moskvilin E.A., Rodionov E.S., Erokhin S.P., Volkov I.V. Fight against forest fires by creation of protecting strips by method of putting quickly hardening foam. Actual problems of the forest complex. 2015; 41:62-64. URL: https://www.elibrary.ru/item.asp?id=23366055 (rus).

43. Kopylov N.P., Moskvilin E.A., Fedotkin D.N., Strizhak P.A. Influence of viscosity of fire-extinguishing solution on forest fires efficiency extinguish using aviation. Forestry Engineering Journal. 2016; 4:62-66. DOI: 10.12737/23436 (rus).

44. Ivchenko O.A., Pankin K.E. Extinguishing forest flammable materials with hydrogels based on aluminum hydroxide. Forestry Engineering Journal. 2019; 1:76-84. DOI: 10.12737/article_5c92016e1314b2.49705560 (rus).

45. Krupkin V.G., Mokhin G.N., Khalturinsky N.A. Modeling of the formation of multilayered structure by fire-retardant intumescent coatings under the influence of a fire. Izvestiya SFedU. Engineering Sciences. 2013; 8:202-206. URL: http://old.izv-tn.tti.sfedu.ru/?p=3587 (rus).

46. Garashchenko A.N., Berlin A.A., Kulkov A.A. Methods and means for providing required fire-safety indices of polymer composite structures. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2019; 28(2):9-30. DOI: 10.18322/PVB.2019.28.02.9-30 (rus).

47. Lewin M. Unsolved problems and unanswered questions in flame retardance of polymers. Polymer Degradation and Stability. 2005; 88(1):13-19. DOI: 10.1016/j.polymdegradstab.2003.12.011

48. Korolchenko A.Ya., Garashchenko A.N., Garashchenko N.A., Rudzinsky V.P. Calculations of the thickness of fire protection, providing the required indicators of fire hazard of wood-glued structures. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2008; 17(3):49-56. URL: https://www.elibrary.ru/item.asp?id=12510629 (rus).

49. Gusev V.G., Arzybashev E.S. Researches Saint-Petersburg Forestry Research Institute in the field of protection of forests from fires. Proceedings of the Saint Petersburg Forestry Research Institute. 2014; 2:56-73. URL: http://journal.spb-niilh.ru/pdf/2-2014-full/spbniilh-proceedings-2-2014-7.pdf (rus).

50. Bogdanova V.V., Kobets O.I. Synthesis and physicochemical properties of di- and trivalent metal-ammonium phosphates. Russian Journal of Applied Chemistry. 2014; 87(10):1385-1399. DOI: 10.1134/S1070427214100012

51. Antsupov E.V., Radivilov S.M. Combustibility degradation of wooden construction members with impregnating compounds. Combustion and Plasma Chemistry. 2011; 9(1):43-50. URL: http://cpc.icp.kz/index.php/cpc/article/view/232 (rus).

52. Demchina R.A., Grynjkiv A.S., Fedyna M.F., Behta P.A. New flame retardant for a wood based on the condensed compounds of phosphorous, nitrogen and boron. Actual problems of the forest complex. 2013; 37:155-160. URL: https://www.elibrary.ru/item.asp?id=21267736 (rus).

53. Leonovich A.A., Sheloumov A.V. The comparative analysis of flameretardant means effectiveness on example of the wood materials. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii. 2013; 204:161-171. URL: https://www.elibrary.ru/item.asp?id=21394469 (rus).

54. Gutsev N.D., Mihailova N.V. Development of methods of laboratory research of fire extinguishing water solutions. Proceedings of the Saint Petersburg Forestry Research Institute. 2015; 2:55-70. URL: http://journal.spb-niilh.ru/pdf/2-2015/spbniilh-proceedings-2-2015-5-full.pdf (rus).

55. Laurichesse S., Averous L. Chemical modification of lignins: towards biobased polymers. Progress in Polymer Science. 2014; 39(7):1266-1290. DOI: 10.1016/j.progpolymsci.2013.11.004

56. Demidov P.G., Shandyba V.A., Shcheglov P.P. Combustion and properties of combustible substances. 2nd ed., rev. Moscow, Khimiya Publ., 1981; 272. (rus).

57. Zeldovich Ya.B., Khariton Yu.B., Todes O.M., Frank-Kamenetskiy D.A., Kondrat’ev V.N., Zagulin A.V. Combustion and explosion theory / Yu.V. Frolov (executive ed). Moscow, Nauka Publ., 1981; 258. (rus).

58. Portnov F.A. Influence of modifiers on coked foam structure and properties formed with thermal decomposition of wood. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2018; 27(4):24-30. DOI: 10.18322/PVB.2018.27.04.24-31 (rus).

59. Guo C., Wang S., Wang Q. Synergistic effect of treatment with disodium octaborate tetrahydrateand guanyl urea phosphate on flammability of pine wood. European Journal of Wood and Wood Products. 2018; 76(5):213-220. DOI: 10.1007/s00107-017-1171-1

60. Tsapko Y., Tsapko A. Establishment of the mechanism and fireproof efficiency of wood treated with an impregnating solution and coatings. Eastern-European Journal of Enterprise Technologies. 2017; 3:10(87):50-55. DOI: 10.15587/1729-4061.2017.102393

61. Stepina I.V., Kotliarova I.A., Miasoedov E.M., Sidorov V.I. Hermal destruction in a nitrogen atmosphere pine wood modified bornitrogen compounds. Khimija Rastitel’nogo Syr’ja/Chemistry of vegetable raw materials. 2013; 3:83-90. DOI: 10.14258/jcprm.1303083 (rus).

62. Anokhin E.A., Polishchuk E.Yu., Sivenkov A.B. Use of fire-retardant impregnating compositions for reducing fire hazard of wooden structures of various lifetimes. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2017; 26(2):22-35. DOI: 10.18322/PVB.2017.26.02.22-35 (rus).

63. Carosio F., Kochumalayil J., Cuttca F., Camino G., Berglund L. Oriented clay nanopaper from biobased components-mechanisms for superior fire protection properties. ACS Applied Materials & Interfaces. 2016; 7(10):5847-5856. DOI: 10.1021/am509058h

64. Pappa A., Mikedi K., Tzamtzis N., Statheropoulos M. TG-MS analysis for studying the effects of fire retardants on the pyrolysis of pine-needles and their components. Journal of Thermal Analysis and Calorimetry. 2006; 84: 655-661. DOI: 10.1007/s10973-005-7201-y

65. Alongi J., Ciobanu M., Malucelli G. Novel flame retardant finishing systems for cotton fabrics based on phosphorus-containing compounds and silica derived from sol-gel. Carbohydrate Polymers. 2011; 85(3):599-608. DOI: 10.1016/j.carbpol.2011.03.024

66. Pokrovskaya E.N., Kobelev A.A., Naganovsky Yu.K. Mechanism and efficiency of fire protection of organophosphorus systems for wood. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2009; 18(3):44-48. URL: https://www.elibrary.ru/item.asp?id=12772426 (rus).

67. Agueda A., Pastor E., Perez Y., Viegas D.X., Planas E. Fire intensity reduction in straw fuel beds treated with a long-term retardant. Fire Safety Journal. 2011; 46(1-2):41-47. DOI: 10.1016/j.firesaf.2010.11.003

68. Baysal E., Altinak M., Colak M., Ozaki S., Toker H. Fire resistance of Douglas fir (Pseudotsuga menzieesi) treated with borates and natural extractives. Bioresource Technology. 2007; 98:1101-1105. DOI: 10.1016/j.biortech.2006.04.023

69. Rakovsky V.E., Pigulevskaya L.V. Chemistry and genesis of peat / A.V. Lazareva (ed.). Moscow, Nedra Publ., 1978; 231. (rus).

70. Chulyukov M.A., Chaikov V.I. Peat fires and measures to combat them. Moscow, Nauka Publ., 1969; 113. (rus).

71. Nikitin Yu.A., Rubtsov V.F. Prevention and suppression of fires in forests and peat bogs. Moscow, Rossel’hozizdat Publ., 1986; 95. (rus).

72. Usenya V.V. Forest fires, consequences and fight against them. Gomel, Forest Institute NASRB, 2002; 202. (rus).

73. Falushin P.A. On the mechanism of burning centre distribution in peat. Nature management. 2011; 19:204-206. URL: https://www.elibrary.ru/item.asp?id=42457628 (rus).

74. Filkov A.I., Kuzin A.Ya., Sharypov O.V., Leroy-Cancellieri V., Cancellieri D., Leoni E. et al. Comparative study to evaluate the drying kinetics of boreal peats from micro to macro scales. Energy Fuels. 2012; 26(1):349-356. DOI: 10.1021/ef201221y

75. Subbotin A.N. Propagation of a peat fire under various conditions of heat and mass transfer with the external environment. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2007; 16(5):42-49. URL: https://www.elibrary.ru/item.asp?id=12513104 (rus).

76. Vonsky S.M., Naumov V.B., Zhdanko V.A. Forest fires and methods of extinguishing them. Leningrad, Leningrad Research Institute of Wood Chemistry, 1989; 56. (rus).

77. Lishtvan I.I. The choice of surfactants to improve the wettability of dried peat. Colloid Journal. 1984; 46(1):29-36. (rus).

78. Kustov M.V., Kalugin V.D. Problems of increasing the fire extinguishing capacity of water-based mortar systems. Actual problems of fire safety : materials of the International Scientific and Practical Conference. Part 1. Мoscow, 2008; 188-190. (rus).

79. Bogdanova V.V., Kobets O.I. Increasing the effectiveness of fire retardants for wood by regulating chemical reactions in the condensed phase. Vestnik of the Institute for Command Engineers of the MES of the Republic of Belarus. 2008; 7(1):50-57. URL: https://journals.ucp.by/index.php/vice/article/view/276 (rus).

80. Lomakin S.M., Zaikov G.E., Mikitaev A.K., Kochnev A.M., Stoyanov O.V., Shkodich V.F., Naumov S.V. Flame retardants for polymers. Bulletin of Kazan Technological University. 2012; 15(7):71-86. URL: https://www.elibrary.ru/item.asp?id=17680920 (rus).

81. Dasari A., Zhong-Zhen Yu, Gui-Peng Cai, Yiu-Wing Mai. Recent developments in the fire retardancy of polymeric materials. Progress in Polymer Science. 2013; 38(9):1357-1387. DOI: 10.1016/j.progpolymsci.2013.06.006

82. Aksit A., Onar N., Kutlu B., Sergin E., Yakin I. Synergistic effect of phosphorus, nitrogen and silicon on flame retardancy properties of cotton fabric treated by sol-gel process. International Journal of Clothing Science and Technology. 2016; 28(3):319-327. DOI: 10.1108/IJCST-03-2016-0029

83. Laoutid F., Bonnaud L., Alexandre M., Lopez-Cuesta J.-M., Dubois Ph. New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Materials Science and Engineering: R: Reports. 2009; 63(3):100-125. DOI: 10.1016/j.mser.2008.09.002

84. Lowden L.A., Hull T.R. Flammability behaviour of wood and a review of the methods for its reduction. Fire Science Reviews. 2013; 2(4):1-19. DOI: 10.1186/2193-0414-2-4

85. Xinyan Huang, Rein G. Smouldering combustion of peat in wildfires: Inverse modelling of the drying and the thermal and oxidative decomposition kinetics. Combustion and Flame. 2014; 161(6):1633-1644. DOI: 10.1016/j.combustflame.2013.12.013

86. Shen D.K., Gu S., Luo K.H., Bridgwater A.V., Fang M.X. Kinetic study on thermal decomposition of woods in oxidative environment. Fuel. 2009; 88(6):1024-1030. DOI: 10.1016/j.fuel.2008.10.034

87. Bogdanova V.V., Kobets O.I. Regulation of the physicochemical properties of compositions based on metal-ammonium phosphates, exhibiting a fire-retardant and fire-extinguishing effect. Sviridov readings : collection of articles / T.N. Vorob’eva (ed.). Vol. 7. Minsk, 2011; 21-27. URL: http://elib.bsu.by/handle/123456789/24996 (rus).

88. Bogdanova V.V., Kobets O.I. Synthesis, physicochemical and fire-retardant properties of ammonium metallophosphates. Vestnik BGU. Series 2: Chemistry. Biology. Geography. 2009; 1:34-39. URL: https://www.elibrary.ru/item.asp?id=22574185 (rus).

89. Sychev M.M. The prospect of using the sol-gel method in the technology of inorganic materials. Journal of Applied Chemistry of the USSR. 1990; 63(3):489-499.

90. Bogdanova V.V., Kobets O.I., Lyudko A.A. Fire-retardant properties of metal-phosphate suspensions based on natural raw materials. Chemical reagents, reagents and low-tonnage processes chemistry : collection of scientific papers. Minsk, Belarusian Science Publ., 2011; 272-284. (rus).

91. Bogdanova V.V., Kobets O.I., Lyudko A.A. Development of synthetic compositions of complex action for fire protection and extinguishing of natural combustible materials. Emergencies: prevention, elimination. 2012; 1(31):53-61. URL: https://www.elibrary.ru/item.asp?id=26295113 (rus).

92. Bogdanova V.V., Kobets O.I. Synthesis of flame retardants for wood and peat on the basis of natural minerals and their physico-chemical properties. Izvestiya SFedU. Engineering Sciences. Thematic issue “Polymer materials of low flammability”. 2013; 8(145):232-236. URL: http://old.izv-tn.tti.sfedu.ru/?p=3617 (rus).

93. Bogdanova V.V., Kobets O.I., Lyudko A.A. Investigation of fire-retardant and fire-extinguishing properties of orthophosphate suspensions obtained on the basis of natural minerals. Sviridov readings : collection of articles. Vol. 9. Minsk, 2013; 28-36. URL: http://elib.bsu.by/handle/123456789/228358 (rus).

94. Bogdanova V.V., Lakhvich V.V., Vrublevsky A.V., Dmitrichenko A.S. Fire extinguishing efficiency of liquid chemical compositions when extinguishing class A fires with spray fire extinguishing devices. Vestnik of the Institute for Command Engineers of the MES of the Republic of Belarus. 2008; 1(7):35-41. URL: https://vestnik.ucp.by/ru/archive (rus).

95. Bogdanova V.V., Kobets O.I., Lyudko A.A. Economical fire-retardant and fire-extinguishing suspensions based on natural metallosilicate raw materials. Innovations in science, industry and education : collection of materials of the scientific and technical conference. Vitebsk, 2010; 140-144. (rus).

96. Bogdanova V.V., Kobets O.I., Lyudko A.A. Temperature profile in model foci of peat when it is quenched with synthetic liquid compositions. XXIV International Scientific and Practical Conference on Fire Safety Problems Dedicated to the 75th Anniversary of the Institute : Collection. In 2nd parts. Part 2. Moscow, VNIIPO, 2012; 71-74. (rus).

97. Lyudko A.A., Bogdanova V.V., Kobets O.I. Methods for determining the spreadability of melts of fire-extinguishing chemical compositions. Emergencies: theory, practice, innovations : materials of the international scientific-practical conference. Gomel, May 24-25, 2012. In 2nd parts. Part 1. Gomel, GSTU im. BY. Sukhoi, 2012; 190-191. (rus).

98. Arinushkina E.V. Manual for the chemical analysis of soils. 2nd ed., rev. and add. Moscow, MSU, 1970; 487. (rus).

99. Marczenko Z. Kolorymetryczne oznaczanie pierwiastkow. Warszawa, 1968; 716. (pol.).

100. Bogdanova V.V., Kobets O.I., Usenya V.V., Gordey N.V., Matyukha S.L. Development and fire retardant and fire extinguishing efficiency of a new unified composition based on local raw materials for fighting fires in the forestry complex. Proceedings of BSTU. No. 1: Forestry. 2014; 1:55-58. URL: https://elib.belstu.by/handle/123456789/11427 (rus).

101. Bogdanova V.V., Kobets O.I., Lyudko A.A. Investigation of the physicochemical and fire-preventing properties of synthetic suspensions based on tripoli and bentonite. Chemical reagents, reagents and processes of low-tonnage chemistry : collection of abstracts of the XXVII International scientific and technical conference. Minsk, Belarusian Science Publ., 2013; 151-160. (rus).

102. Bogdanova V.V., Kobets O.I., Kirlitsa V.P. Mechanism and synergistic action of nitrogen-phosphorus-containing fire retardants in fire protection and extinguishing of wood and peat. Khimicheskaya fizika. 2016; 35(4):57-63. DOI: 10.7868/S0207401X16040038 (rus).

103. Bogdanova V.V., Kobets O.I., Buraya O.N. Directional regulation of the fire-protective and extinguish efficiency of N-P-containing fire retardants in synthetic and natural polymers. Combustion and explosion. 2019; 12(2):106-115. DOI: 10.30826/CE19120214 (rus).

104. Bogdanova V.V., Kobets O.I., Lyudko A.A., Kirlitsa V.P. Optimization of fire-retardant and fire-extinguishing properties of the composition for the prevention and localization of fires in the natural complex by the method of mathematical planning of the experiment. Vestnik of the Institute for Command Engineers of the MES of the Republic of Belarus. 2012; 1(15):32-39. URL: https://vestnik.ucp.by/ru/archive (rus).

105. Bogdanova V.V., Kobets O.I., Kirlitsa V.P. Application of a full factorial experiment to determine the mechanism of the inhibitory effect of flame retardants. Sviridov readings : collection of articles. Vol. 10. Minsk, 2014; 23-38. URL: http://elib.bsu.by/handle/123456789/228358 (rus).

106. Bogdanova V.V., Kobets O.I. Weatherproof fire-retardant and fire-extinguishing composition for preventing and extinguishing fires in the natural complex. Sviridov readings : collection of articles. Vol. 13. Minsk, 2017; 31-40. URL: https://elib.bsu.by/handle/123456789/228556 (rus).

107. Bogdanova V.V., Kobets O.I. Resource-saving fire-retardant and fire-extinguishing composition “complex” for preventing and extinguishing fires in the natural complex. Alternative sources of raw materials and fuel : collection of scientific papers. Vol. 3. Minsk, Belarusian Science Publ., 2018; 91-100. (rus).

108. Bogdanova V.V., Kobets O.I., Usenya V.V., Gordey N.V., Matyukha S.L. Investigation of the physicochemical and fire-preventing properties of synthetic compounds in relation to wood and peat. Problems of forestry and forestry : collection of scientific papers. Vol. 746. Gomel, FI NAS Belarus, 2016; 491-501. (rus).

109. Usenya V.V., Gordey N.V., Markevich T.S., Teglenkov E.A. Silvicultural and ecological aspects of the use of the chemical composition “Kompleksil” for fighting fires in the natural complex of the Republic of Belarus. Problems of forestry and forestry : collection of scientific papers. Vol. 76. Gomel, FI NAS Belarus, 2016; 543-552. (rus).


Review

For citations:


Bogdanova V.V., Kobets O.I. Development and application of synthetic NP dispersions to prevent and extinguish forest and peat fires (Review). Pozharovzryvobezopasnost/Fire and Explosion Safety. 2020;29(6):5-27. (In Russ.) https://doi.org/10.22227/PVB.2020.29.06.5-27

Views: 820


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)