Modern lightning protection of buildings and constructions. Part 2
Abstract
Technical solutions using active lightning rods operating on the principle of Early Streamer Emission (ESE) and device neutralization direct lightning strike (DAS/CTS) are presented. Studies of the effectiveness of the indicated lightning protection systems are considered. Features of the use of ESE and devices for protecting objects in thunderstorm conditions are indicated. The main results of the analysis of the operation of these devices on real objects are given. The inexpediency of using ESE and DAS/CTS devices instead of existing classic lightning rods is shown.
About the Author
A. S. KharlamenkovRussian Federation
Aleksandr S. KHARLAMENKOV - Senior Lecturer of Department of Special Electrical Engineering, Automation Systems and Communication.
Borisa Galushkina St., 4, Moscow, 129366
References
1. Харламенков А. С. Современная молниезащита зданий и сооружений. Часть 1 // Пожаровзрывобезопасность/Fire and Explosion Safety. — 2019. — Т. 28, № 6. — С. 89–91.
2. Cooray V. The similarity of the action of Franklin and ESE lightning rods under natural conditions // Atmosphere. — 2018. — Vol. 9, Issue 6. — P. 225–230. DOI: 10.3390/atmos9060225.
3. Базелян Э. М. Вопросы практической молниезащиты. — М. : ИМАГ, 2015. — 208 с.
4. Chrzan K. L. Early streamer emission terminals from the high voltage engineering perspective // Lecture Notes in Electrical Engineering. — 2020. — Vol. 599. — P. 773–783. DOI: 10.1007/978-3-030-31680-875.
5. Mousa A. M. Failure of the Collection Volume Method and attempts of the ESE lightning ROD industry to resurrect it // Journal of Lightning Research. — 2012. — No. 4, Issue 1. — P. 118–128. DOI: 10.2174/1652803401204010118.
6. Власов А. А. Активная молниезащита: принцип действия, анализ эффективности по сравнению с пассивной молниезащитой // Актуальные проблемы энергетики. — Минск : БНТУ, 2017. — С. 80–84.
7. Becerra M. Corona discharges and their effect on lightning attachment revisited: Upward leader initiation and downward leader interception // Atmospheric Research. — 2014. — Vol. 149. — P. 316–323. DOI: 10.1016/j.atmosres.2014.05.004.
8. Apollonov V. High-conductivity channels in space // Springer Series on Atomic, Optical, and Plasma Physics. — Cham : Springer, 2018. — Vol. 103. — 326 p. DOI: 10.1007/978-3-030-02952-4.
9. Базелян Э. М., Райзер Ю. П. Механизм притяжения молнии и проблема лазерного управления молнией // Успехи физических наук. — 2000. — Т. 170, № 7. — С. 753–769.
10. Carpenter R. B., Jr., Carpenter P., Sletten D. N. Preventing direct lightning strikes. Rev. B. — Boulder, Colorado : Lightning Eliminators & Consultants, Inc., 2014. — 15 р.
11. Uman M. A., Rakov V. A. A critical review of nonconventional approaches to lightning protection // Bulletin of the American Meteorological Society. — 2002. — Vol. 83, Issue 12. — Р. 1809–1820. DOI: 10.1175/bams-83-12-1809.
12. Rakov V. A., Uman M. A. Lightning: physics and effects. — Cambridge : Cambridge University Press, 2003. — 706 p. DOI: 10.1017/cbo9781107340886.
13. NFPA 780. Memorandum of Technical Committee on Lightning Protection. No. 1209 — Public Comment Review. — Quincy : NFPA, 2016. — 114 p.
14. CIGRE WG C4.405. Report. Lightning interception. Non-conventional lightning protection systems // Cooray V. / Ed. of Electra, 2011. — No. 258. — P. 36–41.
15. Hartono Z. A., Robiah I. The ESE and CVM lightning air terminals: A 25 year photographic record of chronic failures // APL 2017. The 10th Asia Pacific International Conference on Lightning (May 16–19, 2017, Krabi Resort, Krabi, Thailand). — 6 p. URL: http://lightningsafety.com/nlsi_lhm/APL2017_Hartono.pdf.
16. Скрипко А. Н., Мисун Л. В. К вопросу профилактики пожаров путем совершенствования средств молниезащиты // Пожарная безопасность: проблемы и перспективы. — 2015. — Т. 1, № 1(6). — С. 84–85.
Review
For citations:
Kharlamenkov A.S. Modern lightning protection of buildings and constructions. Part 2. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2020;29(1):89-92. (In Russ.)