Preview

Flameless burning of wood: parameters of macrokinetics of pyrolysis and thermo-oxidative decomposition

https://doi.org/10.18322/PVB.2020.29.01.43-54

Abstract

Introduction. Many materials are subject to flameless, smoldering combustion: coal, cotton, peat, carbonizing ­polymers, etc. The fire hazard of smoldering burning of organic materials is that low-calorie ignition sources are sufficient to initiate the combustion process, the process is hidden, making it difficult to detect, and can spontaneously turn into a fiery one.

Purpose and objectives. The purpose of this work was to determine the macrokinetics of pyrolysis and thermo­oxidative decomposition of wood of different types of conifers and deciduous species by thermal analysis.

Methods. Samples were investigated by thermal analysis in an inert and air environment. For this, we used the automated modular system Du Pont-9900, including the TGA-951 thermobalance, and the DSK-910 diffe­rential scanning calorimeter.

Results. It was found that the pyrolysis of the main components of wood (hemicellulose and cellulose) proceeds according to the nucleation and growth mechanism of nuclei according to the case law R (n = 1) with activa­tion energies close in order of magnitude for different species (98–136 kJ/mol for hemicelluloses and 203–233 kJ/mol for cellulose). At the stages of thermooxidative decomposition of wood components and heterogeneous oxidation of the carbonized product, diffusion of the D3 (D4) type in spherical geometry becomes the mechanism controlling the process. The effective activation energy of the decomposition of hemicelluloses is reduced to 90.9–95.8 kJ/mol, and of cellulose to 138.3–160.9 kJ/mol. The reaction of heterogeneous oxidation of carbonized products makes a significant contribution to the flameless, smoldering combustion of the material. It is diffusion-controlled and is characterized by high values of activation energy (up to 285 kJ/mol).

Conclusion. The results of the work make it possible to evaluate the macrokinetic parameters of pyrolysis and thermooxidative decomposition of wood of different species during flameless combustion. The obtained data can be used as the main parameters for modeling the heterogeneous combustion of wood of different species in buildings.

About the Authors

E. Yu. Kruglov
State Fire Academy of Emercom of Russia
Russian Federation

Evgeniy Yu. KRUGLOV – Cand. Sci (Eng.), Researcher, Educational Scientific Centre of Problems of Fire Safety in Construction.

Borisa Galushkina St., 4, Moscow, 129366



R. M. Aseeva
State Fire Academy of Emercom of Russia
Russian Federation

Roza M. ASEEVA – Dr. Sci. (Chem.), Professor of Fire ­Safety in Construction Department, Educational Scientific Cent­re of Problems of Fire Safety in Construction.

Borisa Galushkina St., 4, Moscow, 129366



References

1. D. A. Frank-Kamenetskiy. Diffuziya i teploperedacha v khimicheskoy kinetike [Diffusion and heat transfer in chemical kinetics]. 2nd ed. Moscow, Nauka Publ., 1967. 484 p. (in Russain).

2. G. Rein. Smoldering combustion. In: M. J. Hurley (editor-in-chief). SFPE Handbook of Fire Protection Engineering. 5th ed. New York, NY, Springer, 2016, pp. 581–603. DOI: 10.1007/978-1-4939-2565-0_19.

3. E. R. C. Rabelo, C. A. G. Veras, J. A. Carvalho, E. C. Alvarado, D. V. Sandberg, J. C. Santos. Log smoldering after an Amazonian deforestation fire. Atmospheric Environment, 2004, vol. 38, issue 2, pp. 203–211. DOI: 10.1016/j.atmosenv.2003.09.065.

4. A. G. Merzhanov, A. E. Sychev. Self-propagating high-temperature synthesis (in Russian). Available at: http://www.ism.ac.ru/handbook/_shsr.htm (Accessed 20 December 2019).

5. A. G. Merzhanov, A. S. Mukasyan. Tverdoplamennoye goreniye [Solid-flame combustion]. 2nd ed. Moscow, Torus Press, 2007. 336 p. (in Russian).

6. G. M. Davies, A. Gray, G. Rein, C. J. Legg. Peat consumption and carbon loss due to smouldering wildfire in a temperate peatland. Forest Ecology and Management, 2013, vol. 308, pp. 169–177. DOI: 10.1016/j.foreco.2013.07.051.

7. R. M. Hadden, G. Rein, C. M. Belcher. Study of the competing chemical reactions in the initiation and spread of smouldering combustion in peat. Proceedings of the Combustion Institute, 2013, vol. 34, issue 2, pp. 2547–2553. DOI: 10.1016/j.proci.2012.05.060.

8. G. Rein. Smouldering fires and natural fuels. In: Belcher C. M. (ed.). Fire phenomena in the earth system — an interdisciplinary guide to fire science. Chichester, John Wiley & Sons, 2013, pp. 15–33. DOI: 10.1002/9781118529539.ch2.

9. Russian News Agency. Peat fires in Russia in 2009–2014 (in Russian). Available at: https://tass.ru/info/1352655 (Accessed 20 December 2019).

10. V. Babrauskas. Pyrophoric carbon and long-term, low temperature ignition of wood. Fire and Arson Investigator, 2001, vol. 52, no. 2, pp. 12–14.

11. D. C. Walther, A. C. Fernandez-Pello, D. L. Urban. Space shuttle based microgravity smoldering combustion experiments. Combustion and Flame, 1999, vol. 116, issue 3, pp. 398–414. DOI: 10.1016/s0010-2180(98)00095-9.

12. R. Hadden, A. Alkatib, G. Rein, J. L. Torero. Radiant ignition of polyurethane foam: the effect of sample size. Fire Technology, 2014, vol. 50, issue 3, pp. 673–691. DOI: 10.1007/s10694-012-0257-x.

13. J. Šesták. Thermophysical properties of solids: their measurements and theoretical thermal analysis. Prague, Academia Publ., 1984 (Russ. ed.: Shestak Ya. Teoriya termicheskogo analiza: fiziko-khimicheskiye svoystva tverdykh neorganicheskikh veshchestv. Moscow, Mir Publ., 1987. 456 p.).

14. F. E. Rogers, T. J. Ohlemiller. Pyrolysis kinetics of a polyurethane foam by thermogravimetry. A general kinetic method. Journal of Macromolecular Science: Part A — Chemistry, 1981, vol. 15, no. 1, pp. 169–185. DOI: 10.1080/00222338108066438.

15. J. M. Сriado. Kinetic analysis of DTG from master curves. Thermochimica Acta, 1978, vol. 24, issue 1, pp. 186–189. DOI: 10.1016/0040-6031(78)85151-x.

16. A. A. Kobelev, E. Yu. Kruglov, R. M. Aseeva, B. B. Serkov, F. A. Shutov. Thermal behavior of polymer thermal insulation with the reduced combustibility. Pozharovzryvobezopasnost/Fire and Explosion Safety, 2018, vol. 27, no. 4, pp. 13–23 (in Russian). DOI: 10.18322/PVB.2018.27.04.13-23.

17. E. Yu. Kruglov, A. A. Kobelev, F. A. Shutov, R. M. Aseyeva. Thermogravimetric analysis of “Penocom” polymer foamcomposite decomposition. Vse materialy. Entsiklopedicheskii spravochnik / All Materials. Encyclopaedic Reference Manual, 2016, no. 6, pp. 30–34 (in Russian).

18. A. A. Kobelev, E. Yu. Kruglov, B. B. Serkov, R. M. Aseeva. Regularities of thermo-oxidative degradation of low combustibility polystyrene thermоinsulation. Pozhary i chrezvychaynyye situatsii: predotvrashcheniye, likvidatsiya / Fire and Emergencies: Prevention, Elimination, 2018, no. 2, pp. 74–80 (in Russian). DOI: 10.25257/FE.2018.2.74-80.

19. A. A. Kobelev, E. Yu. Kruglov, Yu. K. Naganovskiy, R. M. Aseyeva, B. B. Serkov. Thermal-oxidative destruction of polyisocyanurate heat insulation. Vse materialy. Entsiklopedicheskii spravochnik / All Materials. Encyclopaedic Reference Manual, 2018, no. 12, pp. 31–40 (in Russian). DOI: 10.31044/1994-6260-2018-0-12-31-39.

20. H. E. Kissinger. Reaction kinetics in differential thermal analysis. Analytical Chemistry, 1957, vol. 29, no. 11, pp. 1702–1706. DOI: 10.1021/ac60131a045.

21. M. G. Grønli, G. Várhegyi, C. Di Blasi. Thermogravimetric analysis and devolatilization kinetics of wood. Industrial & Engineering Chemistry Research, 2002, vol. 41, issue 17, pp. 4201–4208. DOI: 10.1021/ie0201157.

22. C. Branca, A. Albano, C. Di Blasi. Critical evaluation of global mechanisms of wood devolatilization. Thermochimica Acta, 2005, vol. 429, issue 2, pp. 133–141. DOI: 10.1016/j.tca.2005.02.030.

23. R. S. Miller, J. Bellan. A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics. Combustion Science and Technology, 1997, vol. 126, issue 1-6, pp. 97–137. DOI: 10.1080/00102209708935670.

24. R. M. Aseeva, B. B. Serkov, A. B. Sivenkov. Goreniye drevesiny i yeye pozharoopasnyye svoystva [Burning wood and its fire behavior]. Moscow, State Fire Academy of Emercom of Russia Publ., 2010. 262 p. (in Russian).

25. M. Poletto, A. J. Zattera, M. M. C. Forte, R. M. C. Santana. Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresource Technology, 2012, vol. 109, pp. 148–153. DOI: 10.1016/j.biortech.2011.11.122.


Review

For citations:


Kruglov E.Yu., Aseeva R.M. Flameless burning of wood: parameters of macrokinetics of pyrolysis and thermo-oxidative decomposition. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2020;29(1):43-54. (In Russ.) https://doi.org/10.18322/PVB.2020.29.01.43-54

Views: 1032


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)