Actual problems of positioning of the robotic monitors to fire area in robotic fire suppression systems. Part 3. RFM operating programs for fire extinguishing with scanning streams considering RFMs positioning to fire area
https://doi.org/10.18322/PVB.2019.28.05.71-81
Abstract
The third part describes the features of RFM positioning in scanning mode; definitions of the main parameters of extinguishing by scanning streams in angular coordinates and linear dimensions are formulated; design calculations are proposed to determine the RFM scanning area relative to fire area.
To develop line streams’ extinguishing procedure, the scanning rasters by area and graphs of RFM angular movements in horizontal and vertical planes during scanning were considered, which together with the movement rates are the basis for extinguishing program. Options for protected area coverage with high-angled or frontal scanning streams were considered. Coverage diagrams of flat surfaces by scanning streams at different angles of attack were presented. The initial requirements to RFM hydraulic and fire tests were presented.
About the Authors
L. M. MeshmanRussian Federation
Leonid M. Meshman, Cand. Sci. (Eng.), Senior Researcher
VNIIPO, 12, Balashikha, Mosсow Region, 143903
V. A. Bylinkin
Russian Federation
Vladimir A. Bylinkin, Cand. Sci. (Eng.), Head of Department
Author ID: 6506544327
VNIIPO, 12, Balashikha, Mosсow Region, 143903
Yu. I. Gorban
Russian Federation
Yuriy I. Gorban, General Director
Zavodskaya St., 4, Petrozavodsk, Republic of Karelia, 185031
M. Yu. Gorban
Russian Federation
Mikhail Yu. Gorban, Technical Director – Chief Project Engineer
Zavodskaya St., 4, Petrozavodsk, Republic of Karelia, 185031
K. Yu. Fokicheva
Russian Federation
Kristina Yu. Fokicheva, Lead Design Engineer
Zavodskaya St., 4, Petrozavodsk, Republic of Karelia, 185031
References
1. Shanee Honig, Tal Oron-Gilad. Understanding and resolving failures in human-robot interaction: Literature review and model development. Frontiers in Psychology, 2018, vol. 9, article no. 861. 21 p. DOI: 10.3389/fpsyg.2018.00861.
2. Analiticheskoye issledovaniye: mirovoy rynok robototekhniki [Analytical study: robotic technologies world market]. Moscow, Russian Association of Robotics Publ., 2016. 157 p. (in Russian). Available at: http://robotforum.ru/assets/files/000_News/NAURR-Analiticheskoe-issledovanie-mirovogo-rinka- robototehniki-%28yanvar-2016%29.pdf (Accessed 5 January 2019).
3. G. E. Marchant, B. Allenby, R. C. Arkin, J. Borenstein, L. M. Gaudet, O. Kittrie, P. Lin, G. R. Lucas, R. O’Meara, J. Silberman. International governance of autonomous military robots. In: K. P. Valavanis, G. J. Vachtsevanos (eds). Handbook of unmanned aerial vehicles. Dordrecht, Springer, 2015, pp. 2879–2910. DOI: 10.1007/978-90-481-9707-1_102.
4. Michael Mшller. UN meeting targets ‘killer robots’. UN News, 14 May 2014. Available at: http://www.un.org/apps/news/story.asp?NewsID=47794 (Accessed 7 January 2019).
5. M. L. Cummings. Unmanned robotics and new warfare: a pilot/professor’s perspective. Harvard National Security Journal, 24 March 2010. Available at: http://harvardnsj.org/2010/03/unmanned-robotics-new-warfare-a-pilotprofessors-perspective/ (Accessed 7 January 2019).
6. 11 police robots patrolling around the world. Wired, 24 July 2016. Available at: https://www.wired.com/2016/07/11-police-robots-patrolling-around-world/ (Accessed 5 January 2019).
7. Aleksey Boyko (ABloud). Catalog of firefighting robots. Firefighting robots. Robotic technologies for firefighting (in Russian). Available at: http://robotrends.ru/robopedia/katalog-pozharnyh-robotov (Accessed 5 January 2019).
8. Chee Fai Tan, S. M. Liew, M. R. Alkahari, S. S. S. Ranjit, M. R. Said, W. Chen, G. W. M. Rauterberg, D. Sivakumar, Sivarao. Fire fighting mobile robot: state of the art and recent development. Australian Journal of Basic and Applied Sciences, 2013, vol. 7, no. 10, pp. 220–230.
9. Fire robots and fire robots technology. Product catalogue 2015–2016. Petrozavodsk, “FR” Engineering Centre of Fire Robots Technology, LLC. Publ., 2017. 23 р. Available at: http://www.russchinatrade.ru/assets/files/ru-offer/FR%E4%BA%A7%E5%93%81%E7%9B%AE%E5%BD%952015%E8%8B%B1%E6%96%87%E7%89%88.pdf (Accessed 20 December 2018).
10. Industrial robots — types and varieties. Robotic technologies, 3D printers. Top 3D company blog (in Russian). Available at: https://habr.com/ru/company/top3dshop/blog/403323/ (Accessed 25 December 2018).
11. Tony Melanson. What Industry 4.0 means for manufacturers. Available at: https://aethon.com/mobile- robots-and-industry4-0/ (Accessed 5 January 2019).
12. Catalog of robotic transport solutions. Transport and robots. Foreign solutions (in Russian). Available at: http://robotrends.ru/robopedia/katalog-resheniy-robotizirovannogo-transporta (Accessed 10 January 2019).
13. Alexander Ruggiero, Sebastian Salvo, Chase St. Laurent. Robotics in construction. IQP Final Report 3/24/2016. Massport, 2016. 78 р. Available at: http://web.wpi.edu/Pubs/E-project/Available/E-project-032316-150233/unrestricted/FinalReport.pdf (Accessed 10 January 2019).
14. Robots in Agriculture. Available at: http://www.intorobotics.com/35-robots-in-agriculture/ (Accessed 5 January 2019).
15. Juan Jesъs Roldбn, Jaime del Cerro, David Garzуn Ramos, Pablo Garcia Aunon, Mario Garzуn, Jorge de Leуn, Antonio Barrientos. Robots in agriculture: State of art and practical experiences. In: Rolf Dieter Schraft, Gernot Schmierer. Service Robots. New York, A K Peters / CRC Press, 2018. 228 p. DOI: 10.5772/intechopen.69874.
16. E. van Oost, D. Reed. Towards a sociological understanding of robots as companions. In: M. H. Lamers, F. J. Verbeek (eds). Human-Robot Personal Relationships. HRPR 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Heidelberg, Springer, pp. 11–18. DOI: 10.1007/978-3-642-19385-9_2.
17. A. van der Plas, M. Smits, C. Wehrmann. Beyond speculative robot ethics: a vision assessment study on the future of the robotic caretaker. Accountability in Research, 2010, vol. 17, issue 6, pp. 299–315. DOI: 10.1080/08989621.2010.524078.
18. A. van Wynsberghe. Designing robots for care: care centered value-sensitive design. Science and Engineering Ethics, 2013, vol. 19, issue 2, pp. 407–433. DOI: 10.1007/s11948-011-9343-6.
19. P. Robinette, A. Howard, A. R. Wagner. Conceptualizing overtrust in robots: why do people trust a robot that previously failed? In: W. F. Lawless, R. Mittu, D. Sofge, S. Russell (eds). Autonomy and artificial intelligence: a threat or savior? Cham, Springer, 2017, pp. 129–155. DOI: 10.1007/978-3-319-59719-5_6.
20. V. Efanov, M. Martynov, K. Pichkhadze. Space robots for scientific research. Nauka v Rossii / Science in Russia, 2012, no. 1, pp. 4–11 (in Russian).
21. L. Royakkers, R. van Est. A literature review on new robotics: automation from love to war. International Journal of Social Robotics, 2015, vol. 7, issue 5, pp. 549–570. DOI: 10.1007/s12369-015-0295-x.
22. S. Honig, T. Oron-Gilad. Understanding and resolving failures in human-robot interaction: Literature review and model development. Frontiers in Psychology, 2018, vol. 9. DOI: 10.3389/fpsyg.2018.00861.
23. Automatic system with self-targeting of fire extinguishing agents onto the fire source. Pozharnoye delo / Fire Business, 1970, no. 2, p. 257 (in Russian).
24. A. I. Veselov, M. G. Abdeev, P. G. Balagin. A device for targeting of a fire extinguishing stream onto the fire source. Inventor’s Certificate USSR, no. 257300, publ. date 11 November 1969, Bull. 35 (in Russian).
25. L. M. Meshman. A device for targeting of a fire extinguishing stream onto the fire source. Inventor’s Certificate USSR, no. 370950, publ. date 22 November 1973, Bull. 12 (in Russian).
26. A. I. Veselov, L. M. Meshman. Avtomaticheskaya pozharo- i vzryvozashchita predpriyatiy khimicheskoy i neftekhimicheskoy promyshlennosti [Automatic fire and explosion safety of the chemical and petrochemical plants]. Moscow, Khimiya Publ., 1975. 280 p. (in Russian).
27. A. I. Weselow, L. M. Meschman. Automatischer brand- und explosionschutz. Berlin, Staatsverlag DDR, 1979. 200 sec. (in Germany).
28. N. L. Popov, Yu. I. Gorban. Fire robots. Pozharnoye delo / Fire Business, 1986, no. 7, pp. 20–21 (in Russian).
29. L. M. Meshman, S. N. Vereshchagin. Sovremennaya pozharnaya robototekhnika: obzornaya informatsiya [Modern fire robotics: Overview]. Moscow, Main Information Center of the Ministry of Internal Affairs USSR Publ., 1988. 42 p. (in Russian).
30. L. M. Meshman, V. V. Pivovarov, A. V. Gomozov, S. N. Vereshchagin. Pozharnaya robototekhnika. Sostoyaniye i perspektivy ispolzovaniya: obzornaya informatsiya [Fire robotics. State and prospects of use: Overview]. Moscow, VNIIPO Publ., 1992. 82 p. (in Russian).
31. L. M. Meshman, S. N. Vereshchagin, S. M. Shirokov, V. I. Aldonyasov. Ballistics of scanning streams. In: Pozharnaya tekhnika i tusheniye pozharov [Fire equipment and fire extinguishing]. Moscow, VNIIPO Publ., 1990, pp. 61–66 (in Russian).
32. Fire Safety Standards 84–2000. Water and foam fire extinguishing installations robotics. General technical requirements. Test methods (in Russian). Available at: http://docs.cntd.ru/document/1200016071 (Accessed 10 January 2019).
33. Technical regulations for fire safety requirements. Federal Law on 22.07.2008 No. 123 (ed. on 29.07.2017) (in Russian). Available at: http://docs.cntd.ru/document/902111644 (Accessed 25 December 2018).
34. FM 142.1. Approval Standard for Fire Protection Monitor Assemblies. FM Approvals LLC, 2018. 28 р.
35. G. Jensen. Fire fighting systems: Comparison of performances of interior and exterior applications at large wood buildings. KA PROJECT. Test report A075349. Final. Trondheim, COWI AS, 2018. 26 р. (in Norwegian).
36. Yu. I. Gorban. An automated fire-fighting complex integrating a television system. European patent 2599525B, publ. date 30 December 2015, Bull. 53.
37. Yu. I. Gorban. Fire robots. Industrial Fire Journal, 2016, no. 103, pp. 12–13.
38. Yu. I. Gorban. Robotized fire complex on basis of mini-fire robot-irrigators with remote access system. Patent RU, no. 2677622, publ. date 17 January 2019, Bull. 2 (in Russian).
39. Yu. I. Gorban. Pozharnyye roboty i stvolnaya tekhnika v pozharnoy avtomatike i pozharnoy okhrane [Firefighting robots, fire monitors and handline nozzles in fire automatics and fire protection]. Мoscow, Pozhnauka Publ., 2013. 352 p. (in Russian).
40. Set of rules 5.13130.2009. Systems of fire protection. Automatic fire-extinguishing and alarm systems. Designing and regulations rules (in Russian). Available at: http://base.garant.ru/195658/ (Accessed 15 December 2018).
41. VNPB 39–16 (STO 1682.0017–2015). Robotic fire suppression system. Design rules and regulations. Мoscow, VNIIPO Publ., 2016. 84 p. (in Russian).
Review
For citations:
Meshman L.M., Bylinkin V.A., Gorban Yu.I., Gorban M.Yu., Fokicheva K.Yu. Actual problems of positioning of the robotic monitors to fire area in robotic fire suppression systems. Part 3. RFM operating programs for fire extinguishing with scanning streams considering RFMs positioning to fire area. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2019;28(5):71-81. (In Russ.) https://doi.org/10.18322/PVB.2019.28.05.71-81