Modification of intumescent coatings using multilayer carbon nanotubes: physico-technological principles and method of application on the pipeline transport facilities
https://doi.org/10.18322/PVB.2019.28.05.39-50
Abstract
Introduction. The aim of the study was to physically substantiate the principles of modification of thin-layer intumescent coatings by controlling their electrophysical characteristics and to develop a technique to improve the fire retardant efficiency of modern fire retardants with varying parameters of the volume fraction of functionalized multilayer carbon nanotubes (MWCNT).
Materials. The materials used in fire retardant intumescent paint “Thermal barrier”, the production of NPK “OgneHimZashchita” modified by MWCNT.
Experimental part. The experimental part included a study by the method of synchronous thermal analysis, the measurement of the dielectric constant, determination of adhesion and the study of electrification when applied, a fire retardant metal.
Results and discussion. Modification of fire retardants due to the introduction of MWCNT in concentrations of 0.1…1.25 % by vol. allows to improve the performance of nanomaterials by increasing the thermal stability of fire retardants at a concentration of nanoparticles up to 0.5 % by vol. In this case, the mass loss of the modified MWCNT sample occurs on average 20–30 % slower in comparison with the unmodified sample. There is an increase in the strength of intumescent fire retardant composition (IFRC) to 40 %. When electrophysical action occurs ordering MWCNT in the material, and also reduces the electric field generated by applying the modified composition on average by 40–50 %.
Conclusion. Modification of MWCNT fire retardants leads to an increase in adhesive strength and increase in thermal resistance of IFRC, provided the stability of nanostructures in the material. The proposed technology of application of modified intumescent fire retardants at pipeline transport facilities should include elements of preparation of the modifying additive and its stabilization to improve the quality characteristics of the fire retardants with MWCNT.
About the Authors
A. V. IvanovRussian Federation
Alexei V. Ivanov, Cand. Sci. (Eng.), Docent, Associate Professor of Department of Fire Safety of Technological Processes and Production
Researcher ID: S-9000–2019
Moskovskiy Avenue, 149, Saint Petersburg, 196105
A. A. Boeva
Russian Federation
Alina A. Boeva, HR manager
Moskovskiy Avenue, 149, Saint Petersburg, 196105
F. A. Dementev
Russian Federation
Fedor A. Dementev, Cand. Sci. (Eng.), Docent, Associate Professor of Criminalistics and Engineering Expertise Department
Moskovskiy Avenue, 149, Saint Petersburg, 196105
A. A. Ryabov
Russian Federation
Alexander A. Ryabov, Chief Technologist
Revolyutsii Highway, 69 A, Saint Petersburg, 195279
References
1. N. Kh. Abdrakhmanov. Scientific and methodical bases of ensuring safe operation of hazardous production facilities of an oil and gas complex based on management of system risks. Abstr. Dr. Sci. (Eng.) Diss. Ufa, 2014. 266 p. (in Russian).
2. Set of rules 245.1325800.2015. Corrosion protection of the main and field pipelines. Building and acceptance. Moscow, Minstroy of Russia Publ., 2015. 51 p. (in Russian).
3. A. A. Tsoy. Method for determining the effectiveness of flame retardant coatings for steel structures under flare hydrocarbon combustion conditions. Cand. Sci. (Eng.) Diss. Saint Petersburg, 2017. 134 p. (in Russian).
4. A. V. Eletskii. Mechanical properties of carbon nanostructures and related materials. Physics-Uspekhi (Advances in Physical Sciences), 2007, vol. 50, no. 3, pp. 225–261. DOI: 10.1070/PU2007v050n03ABEH006188.
5. A. N. Ponomarev, M. E. Yudovitch, M. V. Gruzdev, V. M. Yudovitch. А nonmetallic nanoparticles in a superficial electromagnetic field. Тopological factor of mesostructures interference. Voprosy materialovedeniya / Problems of Materials Science, 2009, no. 4(60), pp. 59–64 (in Russian).
6. V. I. Terekhov, S. V. Kalinina, V. V. Lemanov. The mechanism of heat transfer in nanofluids: State of the art (review). Part 1. Synthesis and properties of nanofluids. Thermophysics and Aeromechanics, 2010, vol. 17, no. 1, pp. 1–14. DOI: 10.1134/s0869864310010014.
7. A. V. Eletskii. Sorption properties of carbon nanostructures. Physics-Uspekhi (Advances in Physical Sciences), 2004, vol. 47, no. 11, pp. 1119–1154. DOI: 10.1070/PU2004v047n11ABEH002017.
8. A. V. Ivanov, A. A. Boeva, G. K. Ivakhnyuk, S. N. Terekhin, V. Ya. Prorok. Research of operational characteristics of nanomodified fire-resistant intumescent compositions in the conditions of hydrocarbon fire at oil transportation facilities. Pozharovzryvobezopasnost/Fire and Explosion Safety, 2017, vol. 26, no. 10, pp. 5–19 (in Russian). DOI: 10.18322/PVB.2017.26.10.5-19.
9. D. E. Zavyalov, O. A. Zybina, N. S. Chernova, A. V. Varlamov, S. S. Mnatsakanov. Fire-retardant intumescent composition based on intercalated graphite. Khimicheskaya promyshlennost’ / Russian Chemical Industry, 2009, vol. 86, no. 8, p. 414–417 (in Russian).
10. K. V. Nechaev, O. A. Zybina, D. E. Zavyalov, O. E. Babkin, S. S. Mnatsakanov. Reaction, which take place in the intumescent fire-retardant paints in the presence of carbon nanobodies. Lakokrasochnie materialy i ikh primenenie / Russian Coatings Journal, 2012, no. 10, pp. 38–39 (in Russian).
11. M. J. Hanus, A. T. Harris. Nanotechnology innovations for the construction industry. Progress in materials science, 2013, vol. 58, no. 7, pp. 1056–1102. DOI: 10.1016/j.pmatsci.2013.04.001.
12. J. Lee, S. Mahendra, P. J. J. Alvarez. Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano, 2010, vol. 4, no. 7, pp. 3580–3590. DOI: 10.1021/nn100866w.
13. W. Yu, D. M. France, J. L. Routbort, S. U. S. Choi. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transfer Engineering, 2008, vol. 29, no. 5, pp. 432–460. DOI: 10.1080/01457630701850851.
14. S. Ganguli, H. Aglan, P. Denning, G. Irvin. Effect of loading and surface modification of MWCNTs on the fracture behavior of epoxy nanocomposites. Journal of Reinforced Plastics and Composites, 2006, vol. 25, no. 2, pp. 175–188. DOI: 10.1177/0731684405056425.
15. R. Ormsby, T. McNally, C. Mitchell, N. Dunne. Influence of multiwall carbon nanotube functionality and loading on mechanical properties of PMMA/MWCNT bone cements. Journal of Materials Science: Materials in Medicine, 2010, vol. 21, no. 8, pp. 2287–2292. DOI: 10.1007/s10856-009-3960-5.
16. L. Gu, J. Qiu, Y. Yao, E. Sakai, L. Yang. Functionalized MWCNTs modified flame retardant PLA nanocomposites and cold rolling process for improving mechanical properties. Composites Science and Technology, 2018, vol. 161, pp. 39–49. DOI: 10.1016/j.compscitech.2018.03.033.
17. S. Kugler, K. Kowalczyk, T. Spychaj. Hybrid carbon nanotubes/graphene modified acrylic coats. Progress in Organic Coatings, 2015, vol. 85, pp. 1–7. DOI: 10.1016/j.porgcoat.2015.02.019.
18. A. Chiolerio, M. Castellino, P. Jagdale, M. Giorcelli, S. Bianco, A. Tagliaferro. Electrical properties of CNT-based polymeric matrix nanocomposites. In: S. Yellampalli (ed.). Carbon nanotubes — polymer nanocomposites. Croatia, InTech Open Access Publisher, 2011, pp. 215–230. DOI: 10.5772/18900.
19. Y. Zhang, S. Xiao, Q. Wang, S. Liu, Z. Qiao, Z. Chi, J. Xu, J. Economy. Thermally conductive, insulated polyimide nanocomposites by AlO(OH)-coated MWCNTs. Journal of Materials Chemistry, 2011, vol. 21, no. 38, pp. 14563–14568. DOI: 10.1039/C1JM12450A.
20. Z. Li, B. Gao, G. Z. Chen, R. Mokaya, S. Sotiropoulos, G. Li Puma. Carbon nanotube/titanium dioxide (CNT/TiO2) core-shell nanocomposites with tailored shell thickness, CNT content and photocatalytic/photoelectrocatalytic properties. Applied Catalysis B: Environmental, 2011, vol. 110, pp. 50–57. DOI: 10.1016/j.apcatb.2011.08.023.
21. H. Vahabi, F. Gholami, V. Karaseva, F. Laoutid, R. Mangin, R. Sonnier, M. R. Saeb. Novel nanocomposites based on poly (ethylene-co-vinyl acetate) for coating applications: The complementary actions of hydroxyapatite, MWCNTs and ammonium polyphosphate on flame retardancy. Progress in Organic Coatings, 2017, vol. 113, pp. 207–217. DOI: 10.1016/j.porgcoat.2017.08.009.
22. Y. Li, Y. Gao, Y. Cao, H. Li. Electrochemical sensor for bisphenol A determination based on MWCNT/ melamine complex modified GCE. Sensors and Actuators B: Chemical, 2012, vol. 171-172, pp. 726–733. DOI: 10.1016/j.snb.2012.05.063.
23. Z. Guo, X.-F. Xu, J. Li, Y.-W. Liu, J. Zhang, C. Yang. Ordered mesoporous carbon as electrode modification material for selective and sensitive electrochemical sensing of melamine. Sensors and Actuators B: Chemical, 2014, vol. 200, pp. 101–108. DOI: 10.1016/j.snb.2014.04.031.
24. J. S. Im, B. C. Bai, T.-S. Bae, S. J. In, Y.-S. Lee. Improved anti-oxidation properties of electrospun polyurethane nanofibers achieved by oxyfluorinated multi-walled carbon nanotubes and aluminum hydroxide. Materials Chemistry and Physics, 2011, vol. 126, no. 3. pp. 685–692. DOI: 10.1016/j.matchemphys.2010.12.061.
25. G. K. Ivakhnjuk, V. N. Matjukhin, V. A. Klachkov, A. O. Shevchenko, A. S. Knjazev, K. G. Ivakhnjuk, A. V. Ivanov, V. A. Rodionov. Method and apparatus for controlling physical-chemical processes in substance and on a phase boundary. Patent RU, no. 2479005, publ. date 10 April 2013, Bull. No. 10 (in Russian).
26. V. I. Almyashev, V. V. Gusarov. Termicheskiye metody analiza [Thermal analysis methods]. Saint Petersburg, Saint Petersburg Electrotechnical University “LETI” Publ., 1999. 40 p. (in Russian).
27. A. R. von Hippel. Dielectrics and waves. NY, John Wiley and Sons, 1954. 284 p.
28. A. V. Ivanov, I. L. Skrypnyk, S. V. Voronin. Investigation of electrification processes in handling modified nanofluids and paintwork materials. Problemy upravleniya riskami v tekhnosfere / Problems of Technosphere Risk Management, 2018, no. 3(47), pp. 110–119 (in Russian).
29. A. V. Nikolaychik, N. R. Prokopchuk, T. A. Shpigel, I. V. Nikolaychik. New priming coating materials containing carbon nanotubes. Trudy BGTU. Seriya 4: Khimiya, tekhnologiya organicheskikh veshchestv i biotekhnologiya / Proceedings of BSTU. Series 4: Chemistry, Organic Substances Technology and Biotechnology, 2010, vol. 1, no. 4, pp. 139–142 (in Russian).
30. J. Shen, W. Huang, L. Wu, Y. Hu, M. Ye. The reinforcement role of different amino-functionalized multi-walled carbon nanotubes in epoxy nanocomposites. Composites Science and Technology, 2007, vol. 67, no. 15-16, pp. 3041–3050. DOI: 10.1016/j.compscitech.2007.04.025.
31. Z. Jin, K. P. Pramoda, G. Xu, S. H. Gog. Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites. Chemical Physics Letters, 2001, vol. 337, no. 1-3, pp. 43–47. DOI: 10.1016/S0009-2614(01)00186-5.
32. S. V. Kondrashev, N. P. Dyachkova, V. A. Bogatov, I. A. Mansurova, P. S. Marakhovskii, I. A. Mokretsova, A. S. Fokin. Use of carbon nanotubes for epoxy binders heat resistance increase. Perspektivnyye materialy / Journal of Advanced Materials, 2013, no. 2, pp. 17–23 (in Russian).
33. G. I. Yakovlev, T. M. Mikhalkina, A. M. Bagimov, A. V. Evsyagina. Modification of silicate coating fireprotection by carbon nanotubes. Stroitelnyye materialy, oborudovaniye, tekhnologii XXI veka / Construction Materials, Equipment, Technologies of XXI Century, 2012, no. 8(163), pp. 44–45 (in Russian).
34. A. A. Boyeva, A. V. Ivanov, G. L. Shidlovsky. Investigation of components of modified fire-protective recovery composition by the atom-force microscopy method. Prirodnyye i tekhnogennyye riski (Fiziko-matematicheskiye i prikladnyye aspekty) / Natural and Technological Risks (Physics-Mathematical and Applied Aspects), 2018, no. 1(25), pp. 33–40 (in Russian).
35. A. V. Ivanov, A. A. Miftakhutdinova, G. K. Ivakhnyuk, A. V. Basharichev. Physical and technological principles and methodology for the management of fire protection processes when treating liquid hydrocarbon in the conditions of stabilization of nanostructures. Pozharovzryvobezopasnost/Fire and Explosion Safety, 2018, vol. 27, no. 12, pp. 7–18 (in Russian). DOI: 10.18322/PVB.2018.27.12.7-18.
36. D. Bikiaris. Can nanoparticles really enhance thermal stability of polymers? Part II: An overview on thermal decomposition of polycondensation polymers. Thermochimica Acta, 2011, vol. 523, no. 1-2, pp. 25–45. DOI: 10.1016/j.tca.2011.06.012.
37. O. A. Zybina. Theoretical principles and technology of intumescent materials. Dr. Sci. (Eng.) Diss. Saint Petersburg, 2015. 260 p. (in Russian).
38. K. Chrissafis, D. Bikiaris. Can nanoparticles really enhance thermal stability of polymers? Part I: An overview on thermal decomposition of addition polymers. Thermochimica Acta, 2011, vol. 523, no. 1-2, pp. 1–24. DOI: 10.1016/j.tca.2011.06.010.
Review
For citations:
Ivanov A.V., Boeva A.A., Dementev F.A., Ryabov A.A. Modification of intumescent coatings using multilayer carbon nanotubes: physico-technological principles and method of application on the pipeline transport facilities. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2019;28(5):39-50. (In Russ.) https://doi.org/10.18322/PVB.2019.28.05.39-50