Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search

Actual problems of positioning of the robotic monitors to fire area in robotic fire suppression systems. Part 2. RFM operating programs for fire extinguishing with static streams considering RFMs positioning to fire area

https://doi.org/10.18322/PVB.2019.28.04.63-81

Abstract

The efficiency of robotic fire monitors depends on the fire extinguishing method chosen for these programmable devices to the large extent. This efficiency depends on the correct target, it means on the correct positioning. This issue contains final materials based on fire tests conducted according to the program and methods of VNIIPO in 2014–2018 years. Options for RFM positioning with respect to fire area are described. Curves of coverage by ­static high-angled or frontal streams are given. It is shown that curves depend on the angle of stream attack to the protected surface. The features of fire extinguishing with static streams at angles of attack of 90° and less than 90° are given. The parameters at which fire is to be extinguished by static stream are given for stream contact spot with surface and covered area.

About the Authors

L. M. Meshman
Всероссийский научно-исследовательский институт противопожарной обороны МЧС России
Russian Federation


V. A. Bylinkin
Всероссийский научно-исследовательский институт противопожарной обороны МЧС России
Russian Federation


Yu. I. Gorban
ООО “Инженерный центр пожарной робототехники “ЭФЭР”
Russian Federation


M. Yu. Gorban
ООО “Инженерный центр пожарной робототехники “ЭФЭР”
Russian Federation


K. Yu. Fokicheva
ООО “Инженерный центр пожарной робототехники “ЭФЭР”
Russian Federation


References

1. Shanee Honig, Tal Oron-Gilad. Understanding and resolving failures in human-robot interaction: Literature review and model development. Frontiers in Psychology, 2018, vol. 9, article no. 861. 21 p. DOI: 10.3389/fpsyg.2018.00861.

2. Analiticheskoye issledovaniye: mirovoy rynok robototekhniki [Analytical study: robotic technologies world market]. Moscow, Russian Association of Robotics Publ., 2016. 157 p. (in Russian). Available at: http://robotforum.ru/assets/files/000_News/NAURR-Analiticheskoe-issledovanie-mirovogo-rinka- robototehniki-%28yanvar-2016%29.pdf (Accessed 5 January 2019).

3. G. E. Marchant, B. Allenby, R. C. Arkin, J. Borenstein, L. M. Gaudet, O. Kittrie, P. Lin, G. R. Lucas, R. O’Meara, J. Silberman. International governance of autonomous military robots. In: K. P. Valavanis, G. J. Vachtsevanos (eds). Handbook of unmanned aerial vehicles. Dordrecht, Springer, 2015, pp. 2879–2910. DOI: 10.1007/978-90-481-9707-1_102.

4. Michael Mшller. UN meeting targets ‘killer robots’. UN News, 14 May 2014. Available at: http://www.un.org/apps/news/story.asp?NewsID=47794 (Accessed 7 January 2019).

5. M. L. Cummings. Unmanned robotics and new warfare: a pilot/professor’s perspective. Harvard National Security Journal, 24 March 2010. Available at: http://harvardnsj.org/2010/03/unmanned-robotics-new-warfare-a-pilotprofessors-perspective/ (Accessed 7 January 2019).

6. 11 police robots patrolling around the world. Wired, 24 July 2016. Available at: https://www.wired.com/ 2016/07/11-police-robots-patrolling-around-world/ (Accessed 5 January 2019).

7. Aleksey Boyko (ABloud). Catalog of firefighting robots. Firefighting robots. Robotic technologies for firefighting (in Russian). Available at: http://robotrends.ru/robopedia/katalog-pozharnyh-robotov (Accessed 5 January 2019).

8. Chee Fai Tan, S. M. Liew, M. R. Alkahari, S. S. S. Ranjit, M. R. Said, W. Chen, G. W. M. Rauterberg, D. Sivakumar, Sivarao. Fire fighting mobile robot: state of the art and recent development. Australian Journal of Basic and Applied Sciences, 2013, vol. 7, no. 10, pp. 220–230.

9. Fire robots and fire robots technology. Product catalogue 2015–2016. Petrozavodsk, “FR” Engineer¬ing Centre of Fire Robots Technology, LLC. Publ., 2017. 23 р. Available at: http://www.russchinatrade.ru/assets/files/ru-offer/FR%E4%BA%A7%E5%93%81%E7%9B%AE%E5%BD%952015 %E8%8B%B1%E6%96%87%E7%89%88.pdf (Accessed 20 December 2018).

10. Industrial robots — types and varieties. Robotic technologies, 3D printers. Top 3D company blog (in Russian). Available at: https://habr.com/ru/company/top3dshop/blog/403323/ (Accessed 25 December 2018).

11. Tony Melanson. What Industry 4.0 means for manufacturers. Available at: https://aethon.com/mobile- robots-and-industry4-0/ (Accessed 5 January 2019).

12. Catalog of robotic transport solutions. Transport and robots. Foreign solutions (in Russian). Available at: http://robotrends.ru/robopedia/katalog-resheniy-robotizirovannogo-transporta (Accessed 10 January 2019).

13. Alexander Ruggiero, Sebastian Salvo, Chase St. Laurent. Robotics in construction. IQP Final Report 3/24/2016. Massport, 2016. 78 р. Available at: http://web.wpi.edu/Pubs/E-project/Available/E-project-032316-150233/unrestricted/FinalReport.pdf (Accessed 10 January 2019).

14. Robots in Agriculture. Available at: http://www.intorobotics.com/35-robots-in-agriculture/ (Accessed 5 January 2019).

15. Juan Jesъs Roldбn, Jaime del Cerro, David Garzуn Ramos, Pablo Garcia Aunon, Mario Garzуn, Jorge de Leуn, Antonio Barrientos. Robots in agriculture: State of art and practical experiences. In: Rolf ¬Dieter Schraft, Gernot Schmierer. Service Robots. New York, A K Peters / CRC Press, 2018. 228 p. DOI: 10.5772/intechopen.69874.

16. E. van Oost, D. Reed. Towards a sociological understanding of robots as companions. In: M. H. Lamers, F. J. Verbeek (eds). Human-Robot Personal Relationships. HRPR 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Heidelberg, Springer, pp. 11–18. DOI: 10.1007/978-3-642-19385-9_2.

17. A. van der Plas, M. Smits, C. Wehrmann. Beyond speculative robot ethics: a vision assessment study on the future of the robotic caretaker. Accountability in Research, 2010, vol. 17, issue 6, pp. 299–315. DOI: 10.1080/08989621.2010.524078.

18. A. van Wynsberghe. Designing robots for care: care centered value-sensitive design. Science and Engineering Ethics, 2013, vol. 19, issue 2, pp. 407–433. DOI: 10.1007/s11948-011-9343-6.

19. P. Robinette, A. Howard, A. R. Wagner. Conceptualizing overtrust in robots: why do people trust a robot that previously failed? In: W. F. Lawless, R. Mittu, D. Sofge, S. Russell (eds). Autonomy and artificial intelligence: a threat or savior? Cham, Springer, 2017, pp. 129–155. DOI: 10.1007/978-3-319-59719-5_6.

20. V. Efanov, M. Martynov, K. Pichkhadze. Space robots for scientific research. Nauka v Rossii / Science in Russia, 2012, no. 1, pp. 4–11 (in Russian).

21. L. Royakkers, R. van Est. A literature review on new robotics: automation from love to war. International Journal of Social Robotics, 2015, vol. 7, issue 5, pp. 549–570. DOI: 10.1007/s12369-015-0295-x.

22. S. Honig, T. Oron-Gilad. Understanding and resolving failures in human-robot interaction: Literature review and model development. Frontiers in Psychology, 2018, vol. 9. DOI: 10.3389/fpsyg.2018.00861.

23. Automatic system with self-targeting of fire extinguishing agents onto the fire source. Pozharnoye delo / Fire Business, 1970, no. 2, p. 257 (in Russian).

24. A. I. Veselov, M. G. Abdeev, P. G. Balagin. A device for targeting of a fire extinguishing stream onto the fire source. Inventor’s Certificate USSR, no. 257300, publ. date 11 November 1969, Bull. 35 (in Russian).

25. L. M. Meshman. A device for targeting of a fire extinguishing stream onto the fire source. Inventor’s Certificate USSR, no. 370950, publ. date 22 November 1973, Bull. 12 (in Russian).

26. A. I. Veselov, L. M. Meshman. Avtomaticheskaya pozharo- i vzryvozashchita predpriyatiy khimiche¬skoy i neftekhimicheskoy promyshlennosti [Automatic fire and explosion safety of the chemical and petro-chemical plants]. Moscow, Khimiya Publ., 1975. 280 p. (in Russian).

27. A. I. Weselow, L. M. Meschman. Automatischer brand- und explosionschutz. Berlin, Staatsverlag DDR, 1979. 200 sec. (in Germany).

28. N. L. Popov, Yu. I. Gorban. Fire robots. Pozharnoye delo / Fire Business, 1986, no. 7, pp. 20–21 (in Russian).

29. L. M. Meshman, S. N. Vereshchagin. Sovremennaya pozharnaya robototekhnika: obzornaya informa¬tsiya [Modern fire robotics: Overview]. Moscow, Main Information Center of the Ministry of Internal Affairs USSR Publ., 1988. 42 p. (in Russian).

30. L. M. Meshman, V. V. Pivovarov, A. V. Gomozov, S. N. Vereshchagin. Pozharnaya robototekhnika. Sostoyaniye i perspektivy ispolzovaniya: obzornaya informatsiya [Fire robotics. State and prospects of use: Overview]. Moscow, VNIIPO Publ., 1992. 82 p. (in Russian).

31. L. M. Meshman, S. N. Vereshchagin, S. M. Shirokov, V. I. Aldonyasov. Ballistics of scanning streams. In: Pozharnaya tekhnika i tusheniye pozharov [Fire equipment and fire extinguishing]. Moscow, VNIIPO Publ., 1990, pp. 61–66 (in Russian).

32. Fire Safety Standards 84–2000. Water and foam fire extinguishing installations robotics. General technical requirements. Test methods (in Russian). Available at: http://docs.cntd.ru/document/1200016071 (Accessed 10 January 2019).

33. Technical regulations for fire safety requirements. Federal Law on 22.07.2008 No. 123 (ed. on 29.07.2017) (in Russian). Available at: http://docs.cntd.ru/document/902111644 (Accessed 25 December 2018).

34. FM 142.1. Approval Standard for Fire Protection Monitor Assemblies. FM Approvals LLC, 2018. 28 р.

35. G. Jensen. Fire fighting systems: Comparison of performances of interior and exterior applications at large wood buildings. KA PROJECT. Test report A075349. Final. Trondheim, COWI AS, 2018. 26 р. (in Norwegian).

36. Yu. I. Gorban. An automated fire-fighting complex integrating a television system. European patent 2599525B, publ. date 30 December 2015, Bull. 53.

37. Yu. I. Gorban. Fire robots. Industrial Fire Journal, 2016, no. 103, pp. 12–13.

38. Yu. I. Gorban. Robotized fire complex on basis of mini-fire robot-irrigators with remote access system. Patent RU, no. 2677622, publ. date 17 January 2019, Bull. 2 (in Russian).

39. Yu. I. Gorban. Pozharnyye roboty i stvolnaya tekhnika v pozharnoy avtomatike i pozharnoy okhrane [Firefighting robots, fire monitors and handline nozzles in fire automatics and fire protection]. Мoscow, Pozhnauka Publ., 2013. 352 p. (in Russian).

40. Set of rules 5.13130.2009. Systems of fire protection. Automatic fire-extinguishing and alarm systems. Designing and regulations rules (in Russian). Available at: http://base.garant.ru/195658/ (Accessed 15 December 2018).

41. VNPB 39–16 (STO 1682.0017–2015). Robotic fire suppression system. Design rules and regulations. Мoscow, VNIIPO Publ., 2016. 84 p. (in Russian).


Review

For citations:


Meshman L.M., Bylinkin V.A., Gorban Yu.I., Gorban M.Yu., Fokicheva K.Yu. Actual problems of positioning of the robotic monitors to fire area in robotic fire suppression systems. Part 2. RFM operating programs for fire extinguishing with static streams considering RFMs positioning to fire area. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2019;28(4):63-81. https://doi.org/10.18322/PVB.2019.28.04.63-81

Views: 1936


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)