Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search

Simulation of flame spread over discrete fire load

https://doi.org/10.18322/PVB.2019.28.04.29-41

Abstract

Introduction. Fires at high-rack storages with a discrete fire load develop dramatically fast, while fire detection and suppression systems might activate too late, which leads to significant property damage. The objective of this work is to demonstrate applicability of the thermal pyrolysis model in predictions of fire development in high-rack storage facilities.
Methods. The simulations are performed using FDS 6.6. In the thermal pyrolysis model, the solid material is ex­posed to inert heating until its surface temperature reaches the ignition temperature; combustible material then ignites and burns at a prescribed burning rate. The advantage of this approach is its simplicity and a limited number of input parameters, which include ignition temperature, mass loss rate per unit area, burn-out time and heat of gasification. The model parameters selection procedure is based on literature and experimental data. In this work, FDS simulations are performed for 3- and 5-tier high racks with 2 rows of cardboard boxes (243 = 24 and 245 = 40 boxes in total). Fire suppression systems are not activated.
Results and discussions. Simulations results show that high-rack storage fire dynamics can be replicated using thermal pyrolysis model provided that model parameters are properly selected. Fire growth mechanisms include upward and horizontal flame spread over the combustible surfaces. Net heat flux and surface temperature distributions, in-rack gas velocity and temperature are also reported. When number of tiers is increased to 5 the heat ­release rate grows faster compared to the 3-tier case.
Conclusions. Thermal pyrolysis model enables reasonable replication of high-rack storage fire dynamics, which is proven by comparison with the full-scale experimental data. The model could be used to simulate fire dynamics in rack storages of different configurations at different ceiling heights, with the purpose of predicting fire detection and the performance of fire suppression systems.

About the Authors

E. S. Markus
Peter the Great St. Petersburg Polytechnic University
Russian Federation


A. Yu. Snegirev
Peter the Great St. Petersburg Polytechnic University
Russian Federation


E. A. Kuznetsov
Peter the Great St. Petersburg Polytechnic University
Russian Federation


L. T. Tanklevskiy
Peter the Great St. Petersburg Polytechnic University
Russian Federation


A. V. Arakcheev
Peter the Great St. Petersburg Polytechnic University
Russian Federation


References

1. СП 241.1311500.2015. Системы противопожарной защиты. Установки водяного пожаротушения высотных стеллажных складов автоматические. Нормы и правила проектирования. — М. : ВНИИПО МЧС России, 2015. — 14 с. / Set of rules 241.1311500.2015. Fire protection systems. Automatic water extinguishing systems for high rack storages. Designing and regulations rules. Moscow, VNIIPO Publ., 2015. 14 p. (in Russian).

2. B. Karlsson, J. G. Quintiere. Enclosure fire dynamics. Boca Raton, CRC Press, 1999. 336 p. DOI: 10.1201/9781420050219.

3. H.-Z. Yu. Transient plume influence in measurement of convective heat release rates of fast-growing fires using a large-scale fire products collector. Journal of Heat Transfer, 1990, vol. 112, issue 1, pp. 186–191.1.2910343.

4. H.-Z. Yu, P. Stavrianidis. The transient ceiling flows of growing rack storage fires. Fire Safety Science, 1991, vol. 3, pp. 281–290. DOI: 10.3801/iafss.fss.3-281.

5. N. J. Alvares, H. K. Hasegawa, K. Hout, A. C. Fernandez-Pello, J. White. Analysis of a Run-away high rack storage fire. Fire Safety Science, 1994, vol. 4, pp. 1267–1278. DOI: 10.3801/iafss.fss.4-1267.

6. H. Ingason. Heat release rate of rack storage fires. In: Proceedings of 9th Fire Science & Engineering Conference (Interflam 2001) (Edinburgh Conference Centre, Scotland, 17–19 September 2001). London, Interscience Communications, 2001, pp. 731–740.

7. H. Ingason. In-rack fire plumes. Fire Safety Science, 1997, vol. 5, pp. 333–344. DOI: 10.3801/iafss.fss.5-333.

8. H. Ingason. Effects of flue spaces on the initial in-rack plume flow. Fire Safety Science, 2003, vol. 7, pp. 235–246. DOI: 10.3801/IAFSS.FSS.7-235.

9. P. Chatterjee, Y. Wang, M. Chaos, K. V. Meredith, X. Zhou, S. B. Dorofeev. Numerical simulation of fire growth on corrugated cardboard commodities in three-tier-high rack storage arrays. In: Proceed¬ings of 13th Fire Science & Engineering Conference ((Interflam 2013) (Royal Holloway College, University of London, UK, 24–26 June 2013). London, Interscience Communications, 2013, vol. 1, pp. 163–173.

10. K. V. Meredith, P. Chatterjee, Y. Wang, Y. Xin. Simulating sprinkler based rack storage fire suppres¬sion under uniform water application. In: Proceedings of 7th International Seminar on Fire and Explosion Hazards? (978-981-07-5936-0_07-08.

11. Y. Wang, K. V. Meredith, X. Zhou, P. Chatterjee, Y. Xin, M. Chaos, N. Ren, S. B. Dorofeev. Numerical simulation of sprinkler suppression of rack storage fires. Fire Safety Science, 2014, vol. 11, pp. 1170–118яiafss.fss.11-1170.

12. N. Ren, J. de Vries, X. Zhou, M. Chaos, K. V. Meredith, Y. Wang. Large-scale fire suppression model¬ing of corrugated cardboard boxes on wood pallets in rack-storage configurations. Fire Safety Journal, 2017, vol. 91, pp. 695–704. DOI: 10.1016/j.firesaf.2017.04.008.

13. N. Ren, D. Zeng, K. Meredith, M. Chaos. CFD modeling of fire growth between vertical paper rolls. In: Proceedings of the 9th U. S. National Combustion Meeting (Cincinnati, Ohio, 17–20 May 2015), 2015, pp. 1–10.

14. E. Markus, A. Snegirev, E. Kuznetsov, L. Tanklevskiy. Application of a simplified pyrolysis model to predict fire development in rack storage facilities. Journal of Physics: Conference Series, 2018, vol. 1107, article no. 042012, 7 p. DOI: 10.1088/1742-6596/1107/4/042012.

15. E. Markus, A. Snegirev, E. Kuznetsov, L. Tanklevsiy. Application of a simplified pyrolysis model to predict flame spread over continuous and discrete fire load. Fire Safety Journal, 2019, In press.

16. A. Snegirev, E. Kuznetsov, E. Markus. Coupled analytical approach to predict piloted flaming ignition of non-charring polymers. Fire Safety Journal, 2017 , vol. 93, pp. 74–83. DOI: 10.1016/j.firesaf.2017.08.006

17. NFPA 13. Standard for the Installation of Sprinkler Systems. Quincy, Massachusetts, NFPA, 2016. 496 p.

18. M. Chaos, M. M. Khan, S. B. Dorofeev. Pyrolysis of corrugated cardboard in inert and oxidative en¬vironments. Proceedings of the Combustion Institute, 2013, vol. 34, issue 2, pp. 2583–2590. DOI: 10.1016/j.proci.2012.06.031.

19. K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, M. Vanella, C. Weinschenk, K. Overholt. Fire ¬Dynamics Simulator. Technical Reference Guide. Volume 1: Mathematical Model (Version 6.6.0). NIST Special Publication 1018-1, Gaithersburg, Maryland, National Institute of Standards and Technology, 2017.

20. Fire Dynamics Simulator (FDS) and Smokeview (SMV). Available at: https://pages.nist.gov/fds-smv (Accessed 15 May 2018).

21. K. Guedri, M. N. Borjini, M. Jeguirim, J.-F. Brilhac, R. Saпd. Numerical study of radiative heat transfer effects on a complex configuration of rack storage fire. Energy, 2011, vol. 36, issue 5, pp. 2984–2996. DOI: 10.1016/j.energy.2011.02.042.

22. M. Иekon, K. Struhala, R. Slбvik. Cardboard-based packaging materials as renewable thermal insula¬tion of buildings: thermal and life-cycle performance. Journal of Renewable Materials, 2017, vol. 5, ¬issue 1, pp. 84–93. DOI: 10.7569/JRM.2017.634135.


Review

For citations:


Markus E.S., Snegirev A.Yu., Kuznetsov E.A., Tanklevskiy L.T., Arakcheev A.V. Simulation of flame spread over discrete fire load. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2019;28(4):29-41. (In Russ.) https://doi.org/10.18322/PVB.2019.28.04.29-41

Views: 846


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)