Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search

An experimental study and numerical simulation of flame spread over surface of PMMA slab

https://doi.org/10.18322/PVB.2019.28.04.15-28

Abstract

Introduction. Polymer materials are widely used, however the actual object is to provide polymers combustion ­model to predict their behavior under fire, and reducing flammability. The work is devoted to the experimental ­study and numerical simulation of flame propagation over the surface of horizontally and vertically placed slabs of polymer in still air.
Methods. The object of the investigation was cast polymethylmethacrylate (PMMA). The experiment was focused on measurement of the spatial distributions of the temperature and species concentrations of the PMMA pyrolysis and combustion products in the gas-phase over the surface of PMMA. Temperature was measured by micro­thermocouple with diameter of 50 microns. Probe mass-spectrometry was used for the measurement of the spa­tial distribution of species concentrations in the flame.
Results and discussion. The main species (mehylmethacrylate (MMA), O2, CO2, H2O, N2, C2H4 (ethylene), C3H6 (propylene)) were identified and their concentration profiles were measured on the different distance from the flame front. The chemical structure of the flame was established to be in good agreement with the thermal one. The size of the “dark zone” of the flame, in which the temperature near the surface of the polymer is minimal, correlated well with the size of the oxygen-free zone. The mass burning rate, the velocity of flame propagation, the width of the pyrolysis zone and the temperature distribution in the condensed phase were also measured. Based on the experimental results, densities of conductive and radiation heat fluxes from the flame to the fuel surface were deter­mined. Calcula­tion of the radiation heat flux density was carried out under the assumption of an optically thin ­model. Modeling of the horizontal flame propagation over the PMMA surface was carried out using a two-dimen­sional conjugated laminar combustion model that takes into account one-step reactions — the decomposition reaction of PMMA in the condensed phase and the oxidation of decomposition products in the gas phase. Modeling of the vertical flame propagation over the PMMA surface was carried out using economical model of FDS.
Conclusion. The model was shown to describe satisfactorily the experimental data such as the mass burning rate, flame propagation velocity, as well as the temperature distribution and concentration of species near the flame front.

About the Authors

O. P. Korobeinichev
Voevodsky Institute of Chemical Kinetics and Combustion SB RAS
Russian Federation


I. E. Gerasimov
Voevodsky Institute of Chemical Kinetics and Combustion SB RAS
Russian Federation


M. B. Gonchikzhapov
Voevodsky Institute of Chemical Kinetics and Combustion SB RAS
Russian Federation


A. G. Tereshchenko
Voevodsky Institute of Chemical Kinetics and Combustion SB RAS
Russian Federation


R. K. Glaznev
Novosibirsk State University
Russian Federation


S. A. Trubachev
Novosibirsk State University
Russian Federation


A. G. Shmakov
Voevodsky Institute of Chemical Kinetics and Combustion SB RAS
Russian Federation


A. A. Paletsky
Voevodsky Institute of Chemical Kinetics and Combustion SB RAS
Russian Federation


A. I. Karpov
Institute of Mechanics UB RAS
Russian Federation


A. A. Shaklein
Institute of Mechanics UB RAS
Russian Federation


A. Kumar
Indian Institute of Technology Madras
India


V. Raghavan
Indian Institute of Technology Madras
India


References

1. R. M. Aseeva, G. E. Zaikov. Goreniye polimernykh materialov [Burning of polymeric materials]. -Moscow, Nauka Publ., 1981. 280 p. (in Russian).

2. N. A. Khalturinskii, T. V. Popova, A. A. Berlin. The combustion of polymers and the mechanism of -action of fire-proofing agents. Russian Chemical Reviews, 1984, vol. 53, issue 2, pp. 197–209. DOI: 10.1070/rc1984v053n02abeh003041.

3. Al. Al. Berlin. Combustion of polymers and polymer materials of reduced combustibility. Sorosovskiy obrazovatelnyy zhurnal / Soros Educational Journal, 1996, vol. 2, no. 9, pp. 57–63 (in Russian).

4. A. V. Antonov, I. S. Reshetnikov, N. A. Khalturinskij. Combustion of char-forming polymeric systems. Russian Chemical Reviews, 1999, vol. 68, issue 7, pp. 605–614. DOI: 10.1070/rc1999v068n07abeh000408.

5. N. A. Khalturinskii, T. A. Rudakova. Physical aspects of polymer combustion and the inhibition me-chanism. Russian Journal of Physical Chemistry B, 2008, vol. 2, issue 3, pp. 480–490. DOI: 10.1134/s1990793108030238.

6. N. I. Konstantinova, N. V. Smirnov, A. Yu. Shebeko. Revisiting the assessment of polymeric materials fire protection efficiency. Pozarovzryvobezopasnost / Fire and Explosion Safety, 2018, vol. 27, no. 7-8, pp. 32–42 (in Russian). DOI: 10.18322/PVB.2018.27.07-08.32-42.

7. S. L. Barbot’ko, O. S. Vol’niy, E. A. Veshkin, V. A. Goncharov. Evaluation of fire-resistance of mate-rials and structural components for aircraft equipment. Aviatsionnaya promyshlennost / Aviation Industry, 2018, no. 2, pp. 63–67 (in Russian).

8. A. E. Frey, J. S. T’ien. A theory of flame spread over a solid fuel including finite-rate chemical kinetics. Combustion and Flame, 1979, vol. 36, pp. 263–289. DOI: 10.1016/0010-2180(79)90064-6.

9. K. K. Wu, W. F. Fan, C. H. Chen, T. M. Liou, I. J. Pan. Downward flame spread over a thick PMMA slab in an opposed flow environment: experiment and modeling. Combustion and Flame, 2003, vol. 132, ¬issue 4, pp. 697–707. DOI: 10.1016/s0010-2180(02)00520-5.

10. S. Bhattacharjee, M. D. King, C. Paolini. Structure of downward spreading flames: a comparison of numerical simulation, experimental results and a simplified parabolic theory. Combustion Theory and Modeling, 2004, vol. 8, issue 1, pp. 23–39. DOI: 10.1088/1364-7830/8/1/002.

11. C.-P. Mao, H. Kodama, A. C. Fernandez-Pello. Convective structure of a diffusion flame over a flat combustible surface. Combustion and Flame, 1984, vol. 57, issue 2, pp. 209–236. DOI: 10.1016/ 0010-2180(84)90058-0.

12. C.-H. Chen. A numerical study of flame spread and blowoff over a thermally-thin solid fuel in an op-posed air flow. Combustion Science and Technology, 1990, vol. 69, issue 4-6, pp. 63–83. DOI: 10.1080/ 00102209008951603.

13. A. Kumar, H. Y. Shih, J. S. T’ien. A comparison of extinction limits and spreading rates in opposed and concurrent spreading flames over thin solids. Combustion and Flame, 2003, vol. 132, issue 4, pp. 667–677. DOI: 10.1016/S0010-2180(02)00516-3.

14. C. D. Blasi. Modeling and simulation of combustion processes for charring and non-charring solid -fuels. Progress in Energy and Combustion Science, 1993, vol. 19, issue 1, pp. 71–104. DOI: 10.1016/ 0360-1285(93)90022-7.

15. J. Gong, X. Zhou, J. Li, L. Yang. Effect of finite dimension on downward flame spread over PMMA slabs: Experimental and theoretical study. International Journal of Heat and Mass Transfer, 2015, vol. 91, pp. 225–234. DOI: 10.1016/j.ijheatmasstransfer.2015.07.091.

16. A. C. Fernandez-Pello, F. A. Williams. Laminar flame spread over PMMA surfaces. Symposium (International) on Combustion, 1975, vol. 15, issue 1, pp. 217–231. DOI: 10.1016/s0082-0784(75)80299-2.

17. S. R. Ray, A. C. Fernandez-Pello, I. Glassman. A study of the heat transfer mechanisms in horizontal flame propagation. Journal of Heat Transfer, 1980, vol. 102, no. 2, pp. 357–363. DOI: 10.1115/1.3244288.

18. A. Ito, T. Kashiwagi. Characterization of flame spread over PMMA using holographic interferometry sample orientation effects. Combustion and Flame, 1988, vol. 71, issue 2, pp. 189–204. DOI: 10.1016/ 0010-2180(88)90007-7.

19. A. C. Fernandez-Pello, S. R. Ray, I. Glassman. Flame spread in an opposed forced flow: the effect of ambient oxygen concentration. Symposium (International) on Combustion, 1981, vol. 18, issue 1, pp. 579–589. DOI: 10.1016/s0082-0784(81)80063-x.

20. L. Jiang, C. H. Miller, M. J. Gollner, J.-H. Sun. Sample width and thickness effects on horizontal flame spread over a thin PMMA surface. Proceedings of the Combustion Institute, 2017, vol. 36, issue 2, pp. 2987–2994. DOI: 10.1016/j.proci.2016.06.157.

21. A. V. Singh, M. J. Gollner. Estimation of local mass burning rates for steady laminar boundary layer diffusion flames. Proceedings of the Combustion Institute, 2015, vol. 35, issue 3, pp. 2527–2534. DOI: 10.1016/j.proci.2014.05.040.

22. A. V. Singh, M. J. Gollner. A methodology for estimation of local heat fluxes in steady laminar boun-dary layer diffusion flames. Combustion and Flame, 2015, vol. 162, issue 5, pp. 2214–2230. DOI: 10.1016/j.combustflame.2015.01.019.

23. J. Gong, X. Zhou, Z. Deng, L. Yang. Influences of low atmospheric pressure on downward flame spread over thick PMMA slabs at different altitudes. International Journal of Heat and Mass Transfer, 2013, vol. 61, pp. 191–200. DOI: 10.1016/j.ijheatmasstransfer.2013.01.066.

24. M. B. Ayani, J. A. Esfahani, R. Mehrabian. Downward flame spread over PMMA sheets in quiescent air: Experimental and theoretical studies. Fire Safety Journal, 2006, vol. 41, issue 2, pp. 164–169. DOI: 10.1016/j.firesaf.2005.12.003.

25. A. Ito, T. Kashiwagi. Temperature measurements in PMMA during downward flame spread in air using holographic interferometry. Symposium (International) on Combustion, 1987, vol. 21, issue 1, pp. 65–74. DOI: 10.1016/s0082-0784(88)80232-7.

26. S. Bhattachariee, M. D. King, S. Takahashi, T. Nagumo, K. Wakai. Downward flame spread over poly- (methyl)methacrylate. Proceedings of the Combustion Institute, 2000, vol. 28, issue 2, pp. 2891–2897. DOI: 10.1016/s0082-0784(00)80713-4.

27. W. E. Kaskan. The dependence of flame temperature on mass burning velocity. Symposium (Interna-tional) on Combustion, 1957, vol. 6, issue 1, pp. 134–143. DOI: 10.1016/s0082-0784(57)80021-6.

28. O. P. Korobeinichev, L. V. Kuibida, A. A. Paletsky, A. G. Shmakov. Molecular-beam mass-spectrometry to ammonium dinitramide combustion chemistry. Journal of Propulsion and Power, 1998, vol. 14, issue 6, pp. 991–1000. DOI: 10.2514/2.5364.

29. B. J. McBride, S. Gordon, M. A. Reno. Coefficients for calculating thermodynamic and transport properties of individual species. NASA Technical Memorandum 4513. Washington, National Aeronautics and Space Administration, 1993. 96 p.

30. M. F. Modest. Radiative heat transfer. London, New York, Academic Press, Elsevier Science, 2003. 842 p.

31. H. Zhang, M. F. Modest. Evaluation of the Planck-mean absorption coefficients from HITRAN and HITEMP databases. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, vol. 73, issue 6, pp. 649–653. DOI: 10.1016/s0022-4073(01)00178-9.

32. S. H. Park, A. J. Stretton, C. L. Tien. Infrared radiation properties of methyl methacrylate vapor. Combustion Science and Technology, 1988, vol. 62, issue 4-6, pp. 257–271. DOI: 10.1080/00102208808924012.

33. S. V. Patankar. Numerical heat transfer and fluid flow. McGraw-Hill, Hemisphere Publishing Corporation, 1980. 197 p. (Russ. ed.: S. Patankar. Chislennyye metody resheniya zadach teploobmena i dinamiki zhidkosti. Moscow, Energoatomizdat, 1984. 152 p.).

34. K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk, K. Overholt. Fire Dynamics Simulator. Technical Reference Guide. Volume 1: Mathematical Model. 6th ed. Gaithersburg, Maryland, National Institute of Standards and Technology, and Espoo, VTT Technical Research Centre of Finland, 2013. 149 p.

35. R. Ananth, C. C. Ndubizu, P. A. Tatem. Burning rate distributions boundary layer flow combustion of a PMMA plate in forced flow. Combustion and Flame, 2003, vol. 135, issue 1-2, pp. 35–55. DOI: 10.1016/s0010-2180(03)00143-3.

36. K. Yoshinaga, H. Kobayashi. Numerical study of radiation effects on polypropylene combustion using high-temperature oxidizer diluted with H2O and CO2. Journal of Thermal Science and Technology, 2008, vol. 3, issue 2, pp. 167–178. DOI: 10.1299/jtst.3.167.


Review

For citations:


Korobeinichev O.P., Gerasimov I.E., Gonchikzhapov M.B., Tereshchenko A.G., Glaznev R.K., Trubachev S.A., Shmakov A.G., Paletsky A.A., Karpov A.I., Shaklein A.A., Kumar A., Raghavan V. An experimental study and numerical simulation of flame spread over surface of PMMA slab. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2019;28(4):15-28. (In Russ.) https://doi.org/10.18322/PVB.2019.28.04.15-28

Views: 768


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)