Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search

Features of the polyurethane study as a result of arson attacks

https://doi.org/10.18322/PVB.2019.28.02.31-38

Abstract

Introduction. In most cases, the attackers use combustion initiators — affordable and cheap oil products (gasoline, diesel fuel, engine oils, or their mixtures) to intensify combustion. In order to establish the cause of a criminal fire, it is necessary to determine the presence of a fire initiator at the fire site. The study has been conducted in order to establish the interfering effect of decomposition products of the carrier object on the determination of the presence of diesel fuel.
Materials and methods. Polyurethane (car upholstery), which is able to adsorb liquid on its surface, was chosen as the carrier object, and diesel fuel was used as the combustion initiator, as the most common combustion initiator. The method of fluorescence spectroscopy was used in the study process. Study results and discussion. Polyurethane samples with diesel fuel on its surface and without it were burned in a muffle furnace at temperatures from 200 to 300 °C for 5–20 min. After firing, the crushed samples were extracted, and fluorescence spectra were measured with the help of fluorimeter.
Conclusion. Analysis of the study results showed that when heating polyurethane samples covered with diesel fuel, it is possible to identify the combustion initiator as a strongly burned diesel fuel up to 250 °C C inclusive for 5, 10, 15, and 20 min. When polyurethane samples are heated to temperatures above 250 °C, the identification of the combustion initiator as highly burnt diesel fuel is impossible.

About the Authors

Galina V. Plotnikova
Eastern-Siberian Institute of the Ministry of Internal Affairs of the Russian Federation
Russian Federation

Lermontova St., 110, Irkutsk, 664074

Galina V. PLOTNIKOVA, Cand. Sci. (Chem.), Docent, Associate Professor of Fire Technical Examination Department



Konstantin L. Kuznetsov
Judicial and Expert Establishment Fire-Fighting Service “Testing Fire Laboratory” across Irkutsk Region
Russian Federation

Kultuksaya St., 10, Irkutsk, 664009

Konstantin L. KUZNETSOV, Cand. Sci. (Chem.), Chief of Judicial and Expert Establishment Fire-Fighting Service “Testing Fire Laboratory” across Irkutsk Region



Svetlana F. Malysheva
A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Favorskogo St., 1, Irkutsk, 664033

Svetlana F. MALYSHEVA, Dr. Sci. (Chem.), Leading Researcher of A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences



References

1. D. М. Gordienko (gen. ed.). Pozhary г pozharnaya bezopasnost v 2016 godu. Statisticheskiy sbornik [Fires and fire safety in 2016. Statistical yearbook]. Moscow, VNIIPO Publ., 2017.124 p. (in Russian).

2. I. D. Cheshko, M. A. Galishev, S. V. Sharapov, N. N. Krivykh. Tekhnicheskoye obespecheniye rassledovaniya podzhogov, sovershennykh s primeneniyem initsiatorov goreniya [Technical support for the investigation of arson committed with the use of combustion initiators]. Moscow, VNIIPO Publ., 2002. 120 p. (in Russian).

3. A. A. Vorontsova, D. V. Kalashnikov, A. A. Lipsky, O. A. Asatov. Problems and prospects fortheuse of fire-technical experts, modern methods of detection and study tools for arson. Vestnik Voronezhskogo instituta GPSMChSRossii / Bulletin of Voronezh Institute of State Firefighting Service ofEmercom of Russia, 2017, no. 2, pp. 72-77 (in Russian). Available at: https://elibrary.ru/download/elibrary_29344433_42880380.pdf (Accessed 7 February 2019).

4. V. M. Balakin, A. A. Gallyamov, D. Sh. Garifullin, Ch. D. Abdullina. Phosphorus-containing fire-retarding agents for wood on the basis of aminoliz's products polyurethane. Izvestiya YuFU. Tekhnicheskiye nauki I Izvestiya SFedU. Engineering Sciences, 2013, no. 8(145), pp. 98-105 (in Russian). Available at: https://elibrary.ru/download/elibrary_20214763_82156503.pdf (Accessed February 5, 2019).

5. M. A. Ksenofontov. Polyurethane foams. Structure and properties. VestnikBGU. Seriya 1: Fizika. Matematika. Informatika/ VestnikBSU. Series 1: Physics. Mathematics. Information Science, 2011, no. 3, pp. 48-52 (in Russian). Available at: http://www.elib.bsu.by/bitstream/123456789/29937/l/48-52.pdf (Accessed 5 February 2019).

6. S. G. Dmitrienko, V. V. Apyari. Penopoliuretany. Sorbtsionnyye svoystva iprimeneniye v khimicheskom analize [Polyurethane foams. Sorption properties and application in chemical analysis]. Moscow, URSS Publ, 2010. 264 p. (in Russian).

7. A.N. Beschastnykh, I. D. Cheshko, E. D. Andreeva, N. V. Sirotinkin. An expert investigation of foamed polyurethane's residues after fire. Pozharovzryvobezopasnost / Fire and Explosion Safety, 2004, vol. 13, no. 1, pp. 80-86 (in Russian).

8. Chromatographic methods in the examination of fires (in Russian). Available at: https://poznayka.org/s87402tl.html (Accessed February 10, 2019).

9. J. Bonetti, L. Quarino. Comparative forensic soil analysis of New Jersey State Parks using a combination of simple techniques with multivariate statistics. Journal of Forensic Sciences, 2014, vol. 59, no. 3, pp. 627-636. DOI:10.1111/1556-4029.12375.

10. A. A. Shekov, V. Plotnikov. Factors affecting detection and identification of accelerants using the gas chromatography method. Ekspert-kriminalist / Expert-Criminalist, 2019,no. l,pp. 36-38 (inRussian).

11. I. Fettig, S. Kruger, J. H. Deubel, M. Werrel, T. Raspe, C. Piechotta. Evaluation of a headspace solidphase microextraction method for the analysis of ignitable liquids in fire debris. Journal of Forensic Sciences, 2014, vol. 59, no. 3, pp. 743-749. DOI:10.1111/1556-4029.12342.

12. A. A. Zakharov, N. L. Soshina, R. V. Nagorny. Application of the method of fluorescence spectroscopy and gas-liquid chromatography to determine the cause of the fire. Auditorium, 2017, no. 3(15), pp. 97-103 (in Russian). Available at: https://elibrary.ru/download/elibrary_30450106_l1677834.pdf (Accessed 1 February 2019).

13. E. A. Illarionova, I. P. Syrovatskiy. Metod fluorimetrii. Primeneniye v formats evticheskom analize [The method of fluorimetry. Application in pharmaceutical analysis]. Irkutsk, Irkutsk State Medical University Publ., 2017. 41 p. (in Russian).

14. T. Ueno, T. Nagano. Fluorescent probes for sensing and imaging. Nature Methods, 2011, vol. 8, issue 8, pp. 642-645. DOI:10.1038/nmeth.l663.

15. I. V. Klaptyuk, I. D. Cheshko. The discovery of traces of light oil on the fire spot at the case of arson. Vestnik Sankt-Peterburgskogo universiteta GPS MChS Rossii / Herald of St. Petersburg University of State Fire Service ofEmercom of Russia, 2012, no. 3, pp. 38-43 (in Russian).

16. J. Bocker. 5»ektroskopie. Wurzburg, Vogel Buchverlag, 1997 (inGerman) (Russ. ed.: J. Bocker. Spektroskopiya. Moscow, Tekhnosfera Publ., 2009. 528 p.).

17. L. M. Wysocki, L. D. Lavis. Advances in the chemistry of small molecule fluorescent probes. Current Opinion in ChemicalBiology, 2011, vol. 15,issue6,pp. 752-759. DOI:10.1016/j.cbpa.2011.10.013.

18. X. Chen, T. Pradhan, F. Wang, J. S. Kim, J. Yoon. Fluorescent chemosensors based on spiroringopening of xanthenes and related derivatives. Chemical Reviews, 2012, vol. 112, issue 3, pp. 1910-1956. DOI:10.1021/cr200201z.

19. J. B. Grimm, L. M. Heckman, L. D. Lavis. The chemistry of small-molecule fluorogenic probes. In: С. M. May (ed.). Progress in molecular biology and translational science. USA, Elsevier, 2013. — Vol. 113. — P . 1-34. DOI:10.1016/B978-0-12-386932-6.00001-6.

20. N. Boens, V. Leen, W. Dehaen. Fluorescent indicators based on BODIPY. Chemical Society Reviews, 2012, vol. 41, issue 3, pp. 1130-1172. DOI:10.1039/clcsl5132k.

21. G. P. C. Drummen. Fluorescent probes and fluorescence (microscopy) techniques — Illuminating biological and biomedical research. Molecules, 2012, vol. 17, issue 12, pp. 14067-14090. DOI:10.3390/moleculesl71214067.

22. A. Ettinger, T. Wittmann. Fluorescence live cell imaging. In: L. Wilson, P. Tran (eds.). Methods in cell biology. USA, Academic Press,2014, vol. 123,pp. 77-94. DOI:10.1016/b978-0-12-420138-5.00005-7.

23. I. D. Cheshko, M. Yu. Printseva, L. A. Yatsenko. Obnaruzheniye i ustanovleniye sostava legkovosplamenyayushchikhsya i goryuchikh zhidkostey pri podzhogakh [Detection and determination of the composition of flammable and combustible liquids in arson]. Moscow, VNIIPO Publ., 2010. 90 p. (in Russian).

24.


Review

For citations:


Plotnikova G.V., Kuznetsov K.L., Malysheva S.F. Features of the polyurethane study as a result of arson attacks. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2019;28(2):31-46. https://doi.org/10.18322/PVB.2019.28.02.31-38

Views: 641


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)