Methods and means for providing required fire-safety indices of polymer composite structures
https://doi.org/10.18322/PVB.2019.28.02.9-30
Abstract
Introduction. Publications reflecting the peculiarities of creating structures made of polymer composite materials (PCM) on determining the required fire-safety level are studied. It was noted that insufficient attention to ensuring the required level of fire resistance of PCM structures, which prevents their use in various fields and, in particular, in engineering is paid.
Analytical part. The analysis of publications on research flame retardant efficiency of intumescent flameretardant coatings (FRC) indicators as one of the polymer types and fire protection means of structures made of PCM is carried out. The necessity of solving the urgent task of ensuring the required adhesion between the FRC and PCM, as well as ensuring durability and durability of coatings during the operation period is noted. The results, indicating the possibility of a significant improvement in the PCM fire risk indicators at a relatively low coating thickness are presented.
The analysis of publications showed the important role and possibilities of heat engineering calculations for modeling temperature fields in structures and determining the required thicknesses of intumescent FRC and other fire protection equipment. This role is partly associated with the fact of impossibility of testing such PCM structures as well. It is shown that there is a technique that is currently being successfully used to calculate the heating of polymer composite structures and can be considered as a basis for further improvement. As can be seen from the presented simulation results, bearing composite structures have to be designed in an optimal shape, which, in combination with fire-retardant coatings, will ensure their fire resistance.
Conclusion. The results, demonstrating possible ways to ensure the required fire safety indicators of the PCM structures are presented. On this important and promising topic, tasks that need to be carried out are also noted.
About the Authors
Anatoliy N. GarashchenkoRussian Federation
Zavodskaya St., Khotkovo, Moscow Region, 141371
Anatoliy N. GARASHCHENKO, Dr. Sci. (Eng.), Docent, Leading Researcher of Central Research Institute for Special Machinery
Aleksandr A. Berlin
Russian Federation
Kosygina St., 4, Moscow, 119991
Aleksandr A. BERLIN, Dr. Sci. (Eng.), Professor, Academician of the Russian Academy of Sciences, Scientific Director of the Semenov Institute of Chemical Physics of Russian Academy of Sciences
Aleksandr A. Kulkov
Russian Federation
Zavodskaya St., Khotkovo, Moscow Region, 141371
Aleksandr A. KULKOV, Dr. Sci. (Eng.), Professor, First Deputy of General Director and Chief Designer, Central Research Institute for Special Machinery
References
1. R. M. Aseeva, G. E. Zaikov. Goreniyepolimernykh materialov [Burning of polymeric materials]. Moscow, Nauka Publ, 1981. 280 p. (in Russian).
2. N. A. Khalturinskii, T. V. Popova, A. A. Berlin. The combustion of polymers and the mechanism of action of fire-proofing agents. Russian Chemical Reviews, 1984, vol. 53, issue 2, pp. 197-209. DOI:10.1070/rcl984v053n02abeh003041.
3. Al. Al. Berlin. Combustion of polymers and polymer materials of reduced combustibility. Sorosovskiy obrazovatelnyy zhurnal / Soros Educational Journal, 1996, vol. 2, no. 9, pp. 57-63 (in Russian).
4. A. V. Antonov, E S. Reshetnikov, N. A. Khalturinskij. Combustion of char-forming polymeric systems. Russian Chemical Reviews, 1999, vol. 68, issue 7, pp. 605-614. DOI:10.1070/rcl999v068n07abeh000408.
5. N. A. Khalturinskii, T. A. Rudakova. Physical aspects of polymer combustion and the inhibition mechanism. Russian Journal of Physical Chemistry B, 2008, vol. 2, issue 3, pp. 480-490. DOI:10.1134/sl990793108030238.
6. S. L. Barbotko, O. S. Volnyy, O. A. Kiriyenko, A. N. Lutsenko, E. N. Shurkova. Comparison of firesafety assessment methods of polymer materials in different fields of transport and industry. Vse materialy. Entsiklopedicheskiy spravochnik Prilozheniye к zhurnalu / All the Materials. Encyclopaedic Reference Book. Journal Supplement, 2015, no. 1, pp. 2-9 (in Russian).
7. S. L. Barbotko, O. S. Volnyy, O. A. Kiriyenko, A. N. Lutsenko, E. N. Shurkova. Comparison of firesafety assessment methods of polymer materials in different fields of transport and industry (continuation). Vsematerialy. Entsiklopedicheskiy spravochnik. Prilozheniye кzhurnalu / All the Materials. Encyclopaedic Reference Book. Journal Supplement, 2015, no. 2, pp. 2-9 (in Russian).
8. N. E Konstantinova, N. V. Smirnov, A. Yu. Shebeko. Revisiting the assessment of polymeric materials fire protection efficiency. Pozharovzryvobezopasnost / Fire and Explosion Safety, 2018, vol. 27, no. 7-8, pp. 32-42 (in Russian). DOI:10.18322/PVB.2018.27.07-08.32-42.
9. S. L. Barbotko, O. S. Volnyy, O. A. Kirienko, E. N. Shurkova. Features the testing of aviation materials on fire safety. Part 1. Test on flammability — influence of sample thickness on registered characteristics. Pozharovzryvobezopasnost / Fire and Explosion Safety, 2015, vol. 24, no. 1, pp. 40-48 (in Russian).
10. E. N. Shurkova, O. S. Volnyj, A. N. Lutsenko, S. L. Barbotko. Comparative evaluation of fire polymer composite materials used to the manufacture of structural elements for aircrafts. Pozharovzryvobezopasnost I Fire and Explosion Safety, 2014, vol. 23, no. 2, pp. 20-27 (in Russian).
11. S. L. Barbotko, O. A. Kirienko, O. S. Volnyj, A. N. Lutsenko. Analysis of the fire danger of aircraft engines motor-gondols and other fire hazardous zones; use of fire tests methods of materials and constructive elements to correspond of aviation norms. Problemy bezopasnosti poletov / Problems of Flight Safety, 2017, no. 5. pp. 3-24 (in Russian).
12. S. L. Barbot'ko, O. S. VoTniy, E. A. Veshkin, V. A. Goncharov. Evaluation of fire-resistance of materials and structural components for aircraft equipment. Aviatsionnaya promyshlennost / Aviation Industry, 2018, no. 2, pp. 63-67 (in Russian).
13. S. L. Barbotko, O. S. Volnyj, O. A. Kirienko, E. N. Shurkova. Otsenkapozharobezopasnostipolimernykh materialov aviatsionnogo naznacheniya: analiz sostoyaniya, metody ispytaniy, perspektivy razvitiya, metodicheskiye osobennosti [Fire safety assessment of aviation polymeric materials: background data analysis, test methods, prospects for the development, methodological features]. Moscow, VIAM Publ, 2019. 424 p. (in Russian).
14. V. A. Seredokho. Use of composite materials in shipbuilding (in Russian). Available at: http://compositeforum.ru/netcat_files/userfiles/P12-16_Gorev_SNSZ.pdf (Accessed 8 February 2019).
15. A. V. Anisimov. Prospects for the use of polymer composite materials in shipbuilding (in Russian). Available at: http://www.hccomposite.com/upload/iblock/rod/fbd012f6683d92bd2dlc233244cfa44fpdf (Accessed 18 January 2019).
16. M. A. Kuteynikov, S. M. Kordonets, N. N. Fedonyuk. Development of new rules for full structure and strength of fiber reinforced plastic ships. Nauchno-tekhnicheskiy sbornik Rossiyskogo morskogo registra sudokhodstva / Research Bulletin by Russian Maritime Register of Shipping, 2017, no. 46/47, pp. 64-71 (in Russian).
17. А. N. Garashchenko, V. L. Strakhov, A. F. Razin, Е. P. Kanina, V. P. Rudzinskiy. The development of the heat protection of the propeller shaft supporting structure made of composite materials. Voprosy oboronnoy tekhniki. Seriya 15. Kompozitsionnyye nemetallicheskiye materialy v mashinostroyenii / Military Enginery. Issues 15. Composite Non-Metallic Materials in Mechanical Engineering, 1992, no. 1(101), pp. 12-15 (in Russian).
18. V. L. Strakhov, A. N. Garashchenko, V. P. Rudzinskiy. Estimation of non-stationary heating of multilayer flame retardant coatings. Voprosy oboronnoy tekhniki. Seriya 15. Kompozitsionnyye nemetallicheskiye materialy v mashinostroyenii / Military Enginery. Issues 15. Composite Non-Metallic Materials in Mechanical Engineering, 1994, no. 1(109)-2(110), pp. 30-36 (in Russian).
19. V. A. Nazarenko, A. N. Garashchenko. Results of investigations and perspectives of SGK-2 expanding covering application for constructions and different kind of equipment fire protection. Pozharovzryvobezopasnost I Fire and Explosion Safety, 2005, vol. 14, no. 6, pp. 21-25 (in Russian).
20. V. G. Zverev, V. A. Nazarenko, A. F. Tsimbalyuk. Heat and fire protection of multilayer structures based on the use of foaming coatings. Heat Transfer Research, 2005, vol. 36, issue 7, pp. 543-556. DOI:10.1615/heattransres.v36.i7.20.
21. A. V. Teploukhov. Investigation of the behavior of multilayer structures under the influence of external heat fluxes. Trudy MIT /Proceedings of Moscow Institute for Heat Technology, 2008, vol. 9, part 1, pp. 231-238 (in Russian).
22. V. G. Zverev, V. A. Nazarenko, A. F. Tsimbalyuk. Thermal protection of multilayer containers against the effect of fires. High Temperature, 2008, vol. 46, issue 2, pp. 254-260. DOI:10.1134/s10740-008-2015-9.
23. A. N. Garashchenko, V. P. Vasin, V. I. Natrusov. Improving the fire safety of ammunition containers made of polymer composite structures, using fire protection. Voprosy oboronnoy tekhniki. Seriya 15. Kompozitsionnyye nemetallicheskiye materialy v mashinostroyenii / Military Enginery. Issues 15. Composite Non-Metallic Materials in Mechanical Engineering, 2012, no. 1(164)-2(165), pp. 44-50 (in Russian).
24. V. I. Plotnikov, A. A. Kulkov, M. N. Slitkov, R. V. Plotnikov, A. N. Garashchenko. Development of the design and study of the thermal state of the capping of polymer composite materials in fire conditions. In: Fundamentalnyye osnovy ballisticheskogo proyektirovaniya [Fundamental bases of ballistic design]. Proceedings of 5t h All-Russian Scientific and Technical Conference. Saint Petersburg, Voyenmekh Publ, 2016, pp. 193-196 (in Russian).
25. R. M. Aseeva, B. B. Serkov, A. B. Sivenkov. Goreniye drevesiny i yeye pozharoopasnyye svoystva [Wood burning and its fire hazard properties]. Moscow, State Fire Academy of Emercom of Russia Publ, 2010. 262 p. (in Russian).
26. A. Ya. Korolchenko, A. N. Garashchenko, N. A. Garashchenko, V. P. Rudzinskiy. Calculations of the thickness of fire protection, providing the required indicators of fire danger of wood-glued structures. Pozharovzryvobezopasnost / Fire and Explosion Safety, 2008, vol. 17, no. 3, pp. 49-56 (in Russian).
27. M. M. Almenbaev, O. V. Artsybasheva, R. M. Aseeva, Zh. K. Makishev, V. A. Moskalev, В. B. Serkov, A. B. Sivenkov. Study of the charring rate for long-life wooden constructions. Izvestiya YuFU. Tekhnicheskiye nauki / Izvestiya SFedU. Engineering Sciences, 2014, no. 9(158), pp. 246-254 (in Russian).
28. M. M. Almenbayev. Efficiency of various ways of improve fire protection of wood with paintwork materials. Tekhnologii tekhnosfernoy bezopasnosti/ Technology ofTechnosphere Safety, 2015, no. 2(60), pp. 56-60 (in Russian). Available at: https://elibrary.ru/download/elibrary_24182040_94341714.pdf (Accessed 18 January 2019).
29. E. A. Anokhin, E. Yu. Polishchuk, A. B. Sivenkov. Use of fire-retardant impregnating compositions for reducing fire hazard of wooden structures of various lifetimes. Pozharovzryvobezopasnost / Fire and Explosion Safety,111X1, vol. 26, no. 2, pp. 22-35 (in Russian). DOI: 10.18322/PVB.2017.26.02.22-35.
30. E. A. Anokhin., E. Yu. Polishchyuk, A. B. Sivenkov. The use of fire-protective impregnating coatings to improve the fire hazard class of long service life wooden structures. In: Roytmanovskiye chteniya [Roitman readings]. Proceedings of 5t h International Scientific and Practical Conference. Moscow, 2017, pp. 10-14 (in Russian).
31. F. A. Shutov, D. Yarbrough. Insulation and environmental specifications flame retardant polymer foam composites PENOCOM®. Tekhnologii tekhnosfernoy bezopasnosti / Technology of Technosphere Safety, 2014, no. 4(56). 4 p. (in Russian). Available at: https://elibrary.ru/download/elibrary_23105869_ 67731454.pdf (Accessed 18 January 2019).
32. F. A. Shutov, E. Yu. Kruglov, R. M. Aseeva, В. B. Serkov, A. B. Sivenkov. Influence of polymeric foam composite "PENOCOM" on fire resistance of wood frame separating constructions. Pozharovzryvobezopasnost I Fire and Explosion Safety, 2016, vol. 25, no. 1, pp. 28-37 (in Russian). DOI:10.18322/PVB.2016.25.01.28-37.
33. V. N. Kirillov, V. A. Efimov, S. L. Barbotko, E. V. Nikolaev. Methodical features of carrying out and processing of climatic tests results of polymeric composite materials. Plasticheskiye massy / Plastics, 2013, no. 1, pp. 37-41 (in Russian). Available at: https://elibrary.ru/download/elibrary_18903155_ 28681924.pdf (Accessed 10 January 2019).
34. S. L. Barbotko, M. S. Barbotko, O. S. Volnyy, A. K. Shvedkova. Research ofjoint long-time impacts of temperature and humidity on fire safety of glass reinforced polymers. Pozharovzryvobezopasnost / Fire and Explosion Safety, 2014, vol. 23, no. 7, pp. 16-26 (in Russian).
35. A. B. Laptev, S. L. Barbotko, E. V. Nikolaev. The main research areas of the persistence properties of materials under the influence of climatic and operational factors. Aviacionnye materialy and tehnologii / Aviation Materials and Technologies, 2017, no. S, pp. 547-561 (in Russian).
36. S. L. Barbotko, E. V. Nikolaev, D. V. Abramov, O. S. Volnyj. Influence of polymeric composite materials aging on fire danger registered characteristic. Plasticheskiye massy / Plastics, 2017, no. 1-2, pp. 51-57 (in Russian). Available at: https://elibrary.ru/download/elibrary_28949543_56951119.pdf (Accessed 10 January 2019).
37. L. N. Vakhitova, M. P. Lapushkin, K. V. Kalafat. Lifetime of intumescent fire retardant coatings. F+S: tekhnologii bezopasnosti i protivopozharnoy zashchity / F+S: Fire and Security, 2011, no. 2(50), pp. 58-61 (in Russian).
38. O.N. Gaykovaya, V. V. Kovalenko, A. O. Nesenyuk, O. V. Savchenko. Some aspects of preservation of fire retardant efficiency of swelling coatings for metal constructions. Naukoviy visnik: tsivilniy zakhist tapozhezhnabezpeka I Scientific Bulletin: Civil Protection and Fire Safety, 2011, no. 1(23), pp. 47-55 (in Russian).
39. L. N. Vakhitova, K. V. Kalafat. Ognezashchita stalnykh konstruktsiy [Fire retardance of steel structures]. Kiev, NPV "Interservis" Publ., 2013. 152 p. (in Russian).
40. A. V. Teploukhov, V. G. Zverev, A. N. Garashchenko. Methodology and results of estimation of the influence of structures long-term exploitation on basic properties of the intumescent flame-retardant coatings. Pozharovzryvobezopasnost / Fire and Explosion Safety, 2016, vol. 25, no. 1, pp. 9-16 (in Russian). DOI:10.18322/PVB.2016.25.01.9-16.
41. A.M. Krutov, V. L. Strakhov, A. A. Kulkov, A.N. Garashchenko, A. A. Dalinkevich. Ensuring the warranty periods for the use of flame retardant load-bearing steel structures by the method of accelerated climatic tests. In: Bezopasnost, effektivnost i ekonomika atomnoy energetiki [Safety, Efficiency and Economics of Nuclear Power Industry]. Proceedings of 10th International Scientific and Technical Conference. Moscow, Rosenergoatom Publ., 2016, pp. 429-434 (in Russian).
42. A. N. Garashchenko, A. V. Sukhanov, N. A. Garashchenko, N. V. Smirnov, N. I. Konstantinova, A. A. Merkulov. Decrease of fire hazard of polymeric composite materials when using of intumescent fireproof coverings. Pozharnaya bezopasnost / Fire Safety, 2012, no. 4, pp. 61-67 (in Russian).
43. C. E. Anderson, J. Dziuk, W. A. Mallow, J. Buckmaster. Intumescent reaction mechanisms. Journal of Fire Sciences, 1985, vol. 3, issue 3, pp. 161-194. DOI:10.1177/073490418500300303.
44. J. Buckmaster, C. Anderson, A. Nachman. A model for intumescent paints. International Journal of Engineering Science, 1986, vol. 24, issue 3, pp. 263-276. DOI:10.1016/0020-7225(86)90084-4.
45. I. S. Reshetnikov, A. V. Antonov, N. A. Khalturinskii. Mathematical description of combustion of intumescent polymer systems. Combustion, Explosion, and Shock Waves, 1997, vol. 33,issue6,pp. 669-684. DOI:10.1007/bf02671799.
46. V. L. Strakhov, A. N. Garashchenko, V. P. Rudzinsky. Mathematical modeling of intumiscent fire protection functioning and performances. Pozharovzryvobezopasnost / Fire and Explosion Safety, 1997', vol. 6, no. 3, pp. 21-30 (in Russian).
47. G. N. Isakov, A. Ya. Kuzin. Modeling of heat and mass transfer in multilayer heat- and fire-insulating coatings under interaction with a high-temperature gas flow. Combustion, Explosion, and Shock Waves, 1998, vol. 34, issue 2, pp. 191-197. DOI:10.1007/bf02672820.
48. V. G. Zverev, V. D. Goledin, V. V. Nesmelov, A. F. Tsimbalyuk. Modeling heat and mass transfer in intumescent fire-retardant coatings. Combustion, Explosion, and Shock Waves, 1998, vol. 34, issue 2, pp. 198-205. DOI:10.1007/bf02672821.
49. A. N. Garashchenko, V. L. Strakhov, V. P. Rudzinsky, A. A. Ryzhkov. Aproval of the designmethod for intumescent fire retardance applied on building constructions by example of Hensotherm 4KC. Pozharovzryvobezopasnost I Fire and Explosion Safety, 1999, vol. 8, no. 5, pp. 29-37 (in Russian).
50. V. L. Strakhov, A. N. Garashchenko, G. V. Kuznetsov, V. P. Rudzinskii. High-temperature heat and mass transfer in a layer of moisture-containing fireproof material. High Temperature, 2000, vol. 38, issue 6, pp. 921-925. DOI:10.1023/a:1004149625276.
51. V. L. Strakhov, A.N. Garashchenko, G. V. Kuznesov, V. P. Rudzinski. Heat and mass transfer in termoand fire protection, taking into account the processes of thermal decomposition, evaporation - condensation, mass trasfer and swelling - shrinkage. Matematicheskoye modelirovaniye / Mathematical Models and Computer Simulations, 2000, vol. 12, no. 5, pp. 107-113.
52. V. L. Strakhov, A. N. Garashchenko, V. P. Rudzinskii. Software for simulation of temperature fields in fire resistant building constructions with taking into account the processes of thermal decomposition, intumescense - shrinkage and avaporation - condensation. Pozharovzryvobezopasnost / Fire and Explosion Safety, 2001, vol. 10, no. 4, pp. 9-11 (in Russian).
53. V. L. Strakhov, A. N. Garashchenko, G. V. Kuznetsov, V. P. Rudzinskii. Mathematical simulation ofthermophysical and thermochemical processes during combustion of intumescent fire-protective coatings. Combustion, Explosion, and Shock Waves, 2001, vol. 37, issue 2,pp. 178-186. DOI:10.1023/a:1017557726294.
54. M. Bartholmai, R. Schriever, B. Schartel. Influence of external heat flux and coating thickness on the thermal insulation properties of two different intumescent coatings using cone calorimeter and numerical analysis. Fire and Materials, 2003, vol. 27, issue 4, pp. 151-162. DOI:10.1002/fam.823.
55. T. Yu. Eremina. Modelling and estimation of fire protection efficiency of bloating fireproof compounds. Pozharovzryvobezopasnost / Fire and Explosion Safety, 2003, vol. 12, no. 5, pp. 22-29 (in Russian).
56. V. L. Srtakhov, A. N. Garashchenko, V. P. Rudzinskii, V. A. Aleinik. Mathematical modelling of performance of water-contained intumescent fire-retardant coverings. Pozharovzryvobezopasnost / Fire and Explosion Safety, 2003, vol. 12, no. 1, pp. 39-46 (in Russian).
57. N. M. Bessonov, T. Yu. Eremina, Yu. N. Dmitrieva, M. V. Krasheninnikova. Calculated method for determining the fire resistance of metal structures coated with flame retardant intumescent composition. Pozharnaya bezopasnost / Fire Safety, 2007, no. 1, pp. 89-96 (in Russian).
58. G. J. Griffin. The modeling of heat transfer across intumescent polymer coatings. Journal of Fire Sciences, 2010, vol. 28, issue 3, pp. 249-277. DOI:10.1177/0734904109346396.
59. V. G. Zverev, A. V. Teploukhov, A. F. Tsimbaluyk. Investigation of properties and fire protection efficiency of intumescent coatings. Izvestiya vysshikh uchebnykh zavedeniy. Fizika / Russian Physics Journal, 2014, vol. 57, no. 8-2, pp. 148-153 (in Russian).
60. S. A. Nenakhov, V. P. Pimenova. Physico-chemical foaming fire-retardant coatings based on ammonium polyphosphate (review of the literature). Pozharovzryvobezopasnost / Fire and Explosion Safety, 2010, vol. 19, no. 8, pp. 11-58 (in Russian).
61. S. L. Barbotko, O. S. Volnij,0. A. Kiriyenko, E.N. Shurkova. Creation of the mathematical model and calculation of sample temperatures at tests on fire resistance. Trudy VMM / Proceedings of VMM, 2017, no. 7(55), pp. 110-122 (in Russian). Available at: https://elibrary.ru/download/elibrary_29678401_94671304.pdf (Accessed 10 January 2019).
62. S. Novak, E. Kharchenko, P. Krukovskiy. Analytical-experimental assessment for solving problems of optimal thermal design of fire resistance structures. Fire Safety, 1997, no. 4, pp. 24-26 (in Ukrainian).
63. Krukovskiy P. G. Obratnyyezadachiteplomassoobmena (obshchiy inzhenernyypodkhod) [Inverse heat and mass transfer problems (general engineering approach)]. Kiev, Institute of Engineering Thermophysics of NAS of Ukraine Publ, 1998. 218 p. (in Russian).
64. S. V. Novak, E. F. Yakimenko. Analysis of modern methods, determination of the fire-protective methods and coatings characteristics. Pozhezhna bezpeka: teoriya i praktika / Fire Safety: Theory and Practice, 2011, no. 8, pp. 56-61 (in Russian).
65. N. B. Grigoryan, V. D. Polishchuk, P. G. Krukovsky, S. V. Novak. Assessment of the intumescent fireprotective coating "Phenix STS" ability. Pozhezhna bezpeka: teoriya ipraktika / Fire Safety: Theory and Practice, 2014, no. 17, pp. 34-38 (in Russian).
66. A. Kovaliov, N. Zobenko. Preliminary assessment technique of coating flame retardant capacity for steel structures under hydrocarbon fire temperature conditions. Naukoviy visnik: tsivilniy zakhist tapozhezhna bezpeka / Scientific Bulletin: Civil Protection and Fire Safety, 2016, no. 1(1), pp. 59-64 (in Ukrainian).
67. A. N. Garashchenko, A. A. Kulkov, V. P. Vasin, T. A. Rudakova. Influence of the compound and fracturing behavior of intumescent flame retardant coatings on their effectiveness. Voprosy oboronnoy tekhniki. Seriya 15. Kompozitsionnyyenemetallicheskiyematerialyvmashinostroyenii / Military Enginery. Issues 15. Composite Non-Metallic Materials in Mechanical Engineering, 2010, vol. 15, no. 4(159), pp. 33-38 (in Russian).
68. T. A. Rudakova, Yu. M. Yevtushenko, Yu. A. Grigoryev, A. A. Batrakov. Ways of reducing the temperature of foaming in the system ammonium polyphosphate —pentaerythritol in intumestsent systems. Pozharovzryvobezopasnost / Fire and Explosion Safety, 2015, vol. 24, no. 3, pp. 24-31 (in Russian).
69. A. N. Garashenko, A. V. Sukhanov, N. A. Garashenko, V. P. Rudzinskiy, S. S. Marakhovskiy. Fire protection of polymeric composite structures and its effectiveness estimation. Pozharovzryvobezopasnost / Fire and Explosion Safety, 2009, vol. 18, no. 5, pp. 15-24 (in Russian).
70. A. N. Garashchenko, N. A. Garashchenko, V. P. Rudzinsky, A. V. Soukhanov, S. S. Marakhovsky, I. V. Teminovsky. Fire safety of polymeric composite building structures. Konstrukcii iz kompozicionnyh materialov / Composite Materials Constructions, 2010, no. 2, pp. 45-59 (in Russian).
71. V. P. Rudzinskiy, A. N. Garashchenko, N. A. Garashchenko. Thermotechnical calculations of twodimensional temperature fields in polymer composite structures with intumescent fire protection. Pozharovzryvobezopasnost I Fire and Explosion Safety, 2013, vol. 22, no. 8, pp. 42-47 (in Russian).
72. A. N. Garashchenko, V. P. Rudzinsky, V. O. Kaledin. Use of fire protection for reducing fire hazard of polymer composites and structures on their basis. Izvestiya YuFU. Tekhnicheskiye nauki / Izvestiya SFedU. Engineering Sciences, 2013, no. 8(145), pp. 143-149 (in Russian).
73. V. P. Rudzinsky, A. N. Garashchenko. Numerical analysis of heat transfer in fire-protective coatings deformable upon heating. EPJ Web of Conferences "Thermophysical Basis of Energy Technologies 2015", 2016, vol. 110, art. no. 01067. DOI:10.1051/epjconf/201611001067.
74. A. N. Garashchenko, A. A. Berlin, A. A. Kulkov, I. Z. Dashtiev. Features of the creation of structures made of polymer composites in the presence of requirements for their fire safety indicators. Voprosy oboronnoy tekhniki. Seriya 15. Kompozitsionnyye nemetallicheskiye materialy v mashinostroyenii / Military Enginery. Issues 15. Composite Non-Metallic Materials in Mechanical Engineering, 2018, no. 2(189), pp. 62-69 (in Russian).
75. A. N. Garashchenko, V. P. Rudzinsky, N. A. Garashchenko. Solving heat conduction problems in movable boundary domains under intensive physical-chemical transformation conditions. EPJ Web of Conferences "Thermophysical Basis of Energy Technologies 2015", 2016, vol. 110, art. no. 01020. DOI:10.1051/epjconf/201611001020.
Review
For citations:
Garashchenko A.N., Berlin A.A., Kulkov A.A. Methods and means for providing required fire-safety indices of polymer composite structures. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2019;28(2):9-30. (In Russ.) https://doi.org/10.18322/PVB.2019.28.02.9-30