Preview

Management of electrostatic properties hydrocarbon liquids by modification with carbon nanostructures

https://doi.org/10.18322/PVB.2017.26.07.16-27

Abstract

In processes of filling, draining and transportation of hydrocarbon liquids in tanks and tanks, spraying is resulted by their electrization that promotes emergence of static electricity. Electrostatic discharges are capable to ignite mixes of combustible steams with air or other oxidizers that is one of origins of the fires and explosions in technological devices. One of the modern directions of development of technologies is creation of nanofluids on the basis of carbon nanoparticles, including MWCNT with adjustable parameters warm and the mass transfer. Nanofluids represent suspensions with small concentration of particles of the firm phase. In work electrophysical properties of the modified hydrocarbon liquids were investigated: NEFRAS C2-80/120 gasoline and kerosene of TS-1. Modification consisted in dispersion in liquids of the carbon nano-materials supporting MWCNT which were received by method of catalytic pyrolysis on the “CVDomna”. MWCNT are the functionalization by the reagent method, and their structures are investigated by method of the Raman spectroscopy. Electrophysical modification was carried out by impact on the studied structures of VFMP. It is established that the coefficient of surface tension of the modified hydrocarbon liquids on the basis of NEFRAS C2-80/120 gasoline increased for 6…25 %, and time of drop falling increased by 10…18 %. In the conditions of influence of VFMP of value of coefficient of surface tension of nanofluids preferential decreases by 3…5 %, but expiration time at the same time also increases by 12…15 %. Values of coefficient of surface tension for nanofluids on the basis of kerosene of TS-1 increased up to 6 %. For values of time of the expiration increase in values by 10…24 % was observed. In the conditions of electrophysical impact additional reduction of value of coefficient of surface tension by 4…6 %, and also insignificant increase in exhaust speed by 3…5 % is observed. Values of time of evaporation of the modified nanofluids from the open surface are received, at the same time decrease in intensity of evaporation on average by 30 % for NEFRAS C2-80/120 gasoline was observed. For kerosene of TS-1 decrease in intensity of evaporation to 38 % depending on the used MWCNT was observed that can be explained with sorption properties of substances. At electrophysical influence intensity of evaporation of nanofluids on the basis of NEFRAS C2-80/120 gasoline approaches the values corresponding to basic liquid, and on the basis of kerosene of TS-1 there is the considerable decrease - by 3.1 times. At the research of processes of electrization of hydrocarbon liquids in the conditions of ultrasonic homogenization practically for all samples of nanofluids lower speed of electrization in comparison with basic liquids was observed that testifies to their higher direct-current conductivity. At electrophysical impact there is the additional decrease in electrization of nanofluids that can be connected with impact of VFMP on electrization processes, and also stabilization of nanoparticles in basic hydrocarbon liquids. The received results speak about the possibility of decrease in probability of emergence of explosive concentration in technological devices with hydrocarbon liquids at introduction of nanomaterials to them with MWCNT. Process of homogenization of nanofluids with MWCNT is characterized by lower growth rate of electric field intensity that in turn promotes decrease in probability of spark discharges of static electricity. Electrophysical impact by means of VFMP allows to manage quickly fire and explosion hazar-dous properties of hydrocarbon liquids in the conditions of the operating technological processes.

About the Authors

A. V. Ivanov
Санкт-Петербургский университет ГПС МЧС России
Russian Federation


A. Yu. Sorokin
Санкт-Петербургский университет ГПС МЧС России
Russian Federation


G. K. Ivakhnyuk
Санкт-Петербургский государственный технологический институт (Технический университет)
Russian Federation


F. V. Demekhin
Санкт-Петербургский университет ГПС МЧС России
Russian Federation


References

1. Верёвкин В. Н. Стандарты и нормы электростатической искробезопасности (ЭСИБ) // Энергобезопасность и энергосбережение. -2008. -№ 4. -С. 41-48.

2. Попов Б. Г., Веревкин В. Н., Бондарь В. А., Горшков В. И. Статическое электричество в химической промышленности / Под ред. Б. И. Сажина.-Изд. 2-е, перераб. и доп.-Л. : Химия, 1977. -240 с.

3. Хайдаров А. Ф., Климентова Г. Ю. Компоненты антистатических присадок к дизельному топливу // Вестник Казанского технологического университета.-2014.-Т. 17,№ 1.-С. 266-267.

4. Бобровский С. А., Яковлев Е. И. Защита от статического электричества в нефтяной промышленности. -М. : Недра, 1983.-160 с.

5. Горовых О. Г., Оразбаев А. Р. Определение времени релаксации объемного электростатического заряда, вносимого в резервуары с поступающей диэлектрической углеводородной жидкостью // Вестник Полоцкого государственного университета. Серия C. Фундаментальные науки. - 2015. -№ 4. -С. 66-70.

6. Foygel M., Morris R. D., Anez D., French S., Sobolev V. L. Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity // Physical Review B. -2005. -Vol. 71, No. 10. -P. 104201. DOI: 10.1103/PhysRevB.71.104201.

7. Baby T. T., Ramaprabhu S. Investigation of thermal and electrical conductivity of graphene based nanofluids // Journal of Applied Physics.-2010.-Vol. 108, No. 12.-P. 124308. DOI: 10.1063/1.3516289.

8. Kole M., Dey T. K. Investigation of thermal conductivity, viscosity, and electrical conductivity of graphene based nanofluids // Journal of Applied Physics.-2013.-Vol. 113, No. 8.-P. 084307. DOI: 10.1063/1.4793581.

9. Панин Ю. В., Прилепо Ю. П., Торба Ж. Н., Чуйко А. Г. Исследование электрической проводимости в спиртовых суспензиях многослойных углеродных нанотрубок // Вестник Воронежского государственного технического университета. -2012. -Т. 8, № 2. -С. 70-72.

10. Иванов А. В., Ивахнюк Г. К., Медведева Л. В. Методы управления свойствами углеводородных жидкостей в задачах обеспечения пожарной безопасности // Пожаровзрывобезопасность / Fire and Explosion Safety. -2016.-Т. 25, № 9. -С. 30-37. DOI: 10.18322/PVB.2016.25.09.30-37.

11. Бобринецкий И. И., Неволин В. К., Симунин М. М. Технология производства углеродных нанотрубок методом каталитического пиролиза этанола из газовой фазы // Химическая технология. -2007. -Т. 8, № 2. -С. 58-62.

12. Удовицкий В. Г. Методы оценки чистоты и характеризации свойств углеродных нанотрубок // Физическая инженерия поверхности. -Т. 7, № 4. -С. 351-373.

13. ТУ 2319-006-71371272-2006. Растворители нефтяные. Фасовка. Упаковка. Маркировка. Транспортирование и хранение. -СПб. : Нефтехим, 2006-1 с.

14. ТУ 38.401-67-108-92. Бензин-растворитель для резиновой промышленности. Технические условия. -Уфа : Нефтехим, 1992.-31 с.

15. ТУ 2319-004-71371272-2006. Керосин. Фасовка. Упаковка. Маркировка. Транспортирование и хранение. -СПб. : Нефтехим, 2006 -1 с.

16. Пат. 2479005 Российская Федерация. МПК G05B 24/02 (2006.01), H03B 28/00 (2006.01). Способ и устройство управления физико-химическими процессами в веществе и на границе раздела фаз / Ивахнюк Г. К., Матюхин В. Н., Клачков В. А., Шевченко А. О., Князев А. С., Ивахнюк К. Г., Иванов А. В., Родионов В. А.-№ 2011118347/08; заявл. 21.01.2010; опубл. 10.04.2013, Бюл.№ 10. URL: http://www.freepatent.ru/patents/2479005 (дата обращения: 10.04.2017).

17. Сизов Е. Г., Беховых Ю. В. Механика и молекулярная физика: лабораторный практикум : учебное пособие. -Барнаул : Изд-во АГАУ, 2011. -108 с.

18. Гарифулин Р. Р., Симонова М. А., Зыков А. В., Иванов А. В. Оценка воздействия электрофизической обработки на физико-химические свойства нефтепродуктов // Экология и развитие общества. -2013.-№ 1(7).-С. 29-31.

19. Симонова М. А. Электрофизический способ снижения пожарной опасности хранения и транспортировки углеводородных топлив : дис. …канд. техн. наук. -СПб., 2011. -123 с.


Review

For citations:


Ivanov A.V., Sorokin A.Yu., Ivakhnyuk G.K., Demekhin F.V. Management of electrostatic properties hydrocarbon liquids by modification with carbon nanostructures. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2017;26(7):16-27. (In Russ.) https://doi.org/10.18322/PVB.2017.26.07.16-27

Views: 552


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)