Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search

Calculation of the time-current characteristics of an arc fault detection device based on the model of serial arc fault caused by fracture of cable conductor

https://doi.org/10.18322/PVB.2016.25.11.45-50

Abstract

Fires of electrical reasons, make up around 20-25 % of total number of fires in the world. The most flammable (more than 60 % of the total number of electrical fires) are cable products. In the operation of the power plant possible an emergency mode is parallel or serial arc fault. It causes a fire due to the high temperature of the arc up to 7000 °C. It was found that fire arises primarily as a result of the electric arc. An arc fault is often a consequence of damage of electrical insulation. AFDD/AFCI is fairly new relay device for fire safety. Standard of Russian Federation for these devices is identical to the International standard IEC 62606:2013 “General requirements for arc fault detection devices”. The standard requires limits of response time of device depending of arc fault current. A time-current characteristic is one of the most important indicators of AFDD/AFCI performance. Late trip of emergency circuit with arc fault are most likely to cause a fire of insulation. Thus, to ensure the fire safety of cable it is necessary to know and use in design of electrical networks the maximum allowable time-current characteristics of the arc fault protection device. The case of a serial arc fault by fracture of cable conductor is considered. In practice, the most frequent reasons of this are rupture of cable wire due to metal fatigue or excessive tension and damage by external object. In the damaged conductor arises the small gap which punches by operating voltage. Thus, the current on this cable continues, and remains close to the nominal value. The gap arises the arc discharge accompanied by intense heating causes further degradation of the cable insulation and arises a fire. Determination of fire risk parameters of ignition energy of an arc fault is practical and is related to the fire safety of wire and electric cable networks. By the heat balance equation in the proposed model we obtained the expressions relating the general thermophysical parameters of the process are obtained. In particular, the formula of maximum allowable time-current characteristics of AFDD/AFCI is obtained. Furthermore we done the evaluation of termophysical parameters and time-current characteristics. Then given the comparison of these results with the values of the standard GOST R IEC 62606. Conformity of the standard values and the calculated data is found. Thus, we identified the model by which the standard values are calculated.

About the Authors

V. K. Monakov
ООО “Астро-УЗО”
Russian Federation


D. Yu. Kudryavtsev
ООО “Астро-УЗО”
Russian Federation


V. V. Smirnov
Национальный исследовательский Московский государственный строительный университет
Russian Federation


References

1. UL 1699. Standard for Arc-Fault Circuit-Interrupters.-Underwriters Laboratories, Inc., 2006. URL: https://standardscatalog.ul.com/standards/en/standard/1699 (дата обращения: 01.08.2016).

2. IEC 62606:2013. General requirements for arc fault detection devices.-International Electrotechnical Commission, 2013. URL: https://webstore.iec.ch/publication/7248 (дата обращения: 01.08.2016).

3. DIN VDE 0100-420:2016-02. Teil 4-42: SchutzmaЯnahmen-Schutz gegen thermische Auswirkungen (IEC 60364-4-42:2010, modifiziert + A1:2014). - Deutsches Institut fьr Normung, 2016. URL: https://vde-verlag.de/normen/0100304/din-vde-0100-420-vde-0100-420-2016-02.html (дата обращения: 01.08.2016).

4. Electrical Arcing of Aged Aircraft Wire : Report No. N191-RPT4AU99.-Washington : National Transportation Safety Board, 1999.URL:http://twa800.sites.usa.gov/files/twa800/DCA96MA070/255991.pdf (дата обращения: 01.08.2016).

5. Billings M. J., Smith A., Wilkins R. Tracking in polymeric insulation // IEEE Transactions on Electrical Insulation. -1967.-Vol. EI-2, Issue 3. -P. 131-137. DOI: 10.1109/tei.1967.298855.

6. Мыльников М. Т. Общая электротехника и пожарная профилактика в электроустановках : учебник для пожарно-технических училищ. -М. : Стройиздат, 1985. -311 с.

7. Веревкин В. Н., Смелков Г. И. Безопасность электрических контактных соединений // Промышленная энергетика. -1988.-№ 4. -С. 40-46.

8. Лебедев К. Б., Чешко И. Д. Следы больших переходных сопротивлений в электротехнических устройствах и их экспертное исследование // Пожаровзрывобезопасность.-2003.-Т. 12,№6. -С. 32-38.

9. Olyphant M., jr. Arc Resistance. I. Tracking Processes in Thermosetting Insulating Materials // ASTM Bulletin. -1952.-No. 181.-Р. 60-67.

10. Olyphant M., jr. Arc Resistance. II. Effect of Testing Conditions on Tracking Properties of Thermosetting Insulating Materials // ASTM Bulletin. -1952. -No. 185.-Р. 41-48.

11. Монаков В. К., Кудрявцев Д. Ю., Козырев А. А. Принцип работы устройства защиты электроустановок от дуговых замыканий // ЭЛЕКТРО. Электротехника, электроэнергетика, электротехническая промышленность. -2014.-№ 1. -С. 28-30.

12. Теплотехника : учебник для вузов / Под ред. А. П. Баскакова.-2-е изд.-М. : Энергоатомиздат, 1991.

13. Исаченко В. П., Осипова В. А., Сукомел А. С. Теплопередача. -М. : Энергия, 1969.

14. Михеев М. А., Михеева И. М. Основы теплопередачи. -М. : Энергия, 1977.

15. Гарке В. Г., Хазбулатов З. З. Параметры электрической дуги при КЗ и их влияние на работу релейной защиты // Доклад на IX симпозиуме “Электротехника 2030”, Казанский государственный энергетический университет, июнь 2007 г. -М. : ВЭИ, 2007.


Review

For citations:


Monakov V.K., Kudryavtsev D.Yu., Smirnov V.V. Calculation of the time-current characteristics of an arc fault detection device based on the model of serial arc fault caused by fracture of cable conductor. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2016;25(11):45-50. (In Russ.) https://doi.org/10.18322/PVB.2016.25.11.45-50

Views: 553


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)