Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search

Finely-dispersed water fire radiation screening

https://doi.org/10.18322/PVB.2017.26.06.52-59

Abstract

The theoretical and experimental study results of finely-dispersed water droplet flow features screening fire heat radiation are shown. Water curtains offer cooling and fire with its danger factor spread prevention (OFP) through window, door and technological openings, outside protected equipment, area or rooms, as well as safe people escape provision from rooms on fire. In designing water curtain generation devices, as a rule, there aren’t taken into account curtain parameters defining their protection features, such as screening factor, droplet diameter and their concentration. Fire protection curtain efficiency depends to a lesser extent on fire temperature but to a greater extent it depends on water droplet diameter and water flow rate. A relatively efficient and water flow-rate-effective curtain can be designed with sprayer generated droplets of less than 200 mm diameter. With droplet size of more than 500 mm the infra-red fire radiation is screened by less than 25 %. Single-fold dispersion for finely-dispersed water with r = 20 mm droplet radius and n = 1010 m-3 droplet calculated concentration is possible in a few centimetre length. In considering screening curtain features the average Zauter diameter d32 plays an essential role, particularly it refers to a multiple dispersion that considerably (by 4…5 fold) decreases radiation falling onto the screen. Fine droplets usage d32 < 100 mm in diameter is connected with certain features of that flow. This also relates to an output sprayer nozzle, the diameter of which greatly effects the size of generated droplets: the less the nozzle diameter, the less average Zauter diameter of the droplets in the spray cone. A great droplet diameter dependence follows from output sprayer nozzle liquid velocity value that turns into a droplet flow while interacting with the ambient air, thereby the greater an output liquid velocity, the smaller the droplets. The experimental data analysis shows that infra-red radiation shade coefficient increase is connected with volumetric droplet concentration (curtain flow rate), and average median diameter decrease (droplet flow dispersion).

About the Authors

A. L. Dushkin
Московский авиационный институт (Национальный исследовательский университет)
Russian Federation


S. E. Lovchinskiy
Московский авиационный институт (Национальный исследовательский университет)
Russian Federation


N. N. Ryazantsev
Московский авиационный институт (Национальный исследовательский университет)
Russian Federation


References

1. Жаров С., Зархин А., Митрофанова М. Дренчерные завесы: теория и практика // Безопасность. Достоверность. Информация.-2006.-№5(68).-С. 24-28. URL: http://mx1.algoritm.org/arch/?id=22@a=547 (дата обращения: 10.04.2017).

2. СП 5.13130.2009. Системы противопожарной защиты. Установки пожарной сигнализации и пожаротушения автоматические. Нормы и правила проектирования : приказ МЧС РФ от 25.03.2009 № 175; введ. 01.05.2009.-М. : ФГУ ВНИИПО МЧС России, 2009.

3. Бородкин А. Н., Леончук П. А., Лицкевич В. В., Шамонин В. Г. Проблемы численного моделирования водяных завес, создаваемых оросителями : обзор публикаций // Пожарная безопасность.- 2009. -№ 4. -С. 92-105.

4. Виноградов А. Г. Экранирование теплового излучения полидисперсными водяными завесами // Пожаровзрывобезопасность. -2013.-Т. 22, № 6. -С. 74-84.

5. Fцrsth M.,Mцller K. Enhanced absorption of fire induced heat radiation in liquid droplets // Fire Safety Journal. -2013.-Vol. 55. -P. 182-196. DOI: 10.1016/j.firesaf.2012.10.005.

6. Monod B., Collin A., Parent G., Boulet P. Infrared radiative properties of vegetation involved in forest fires // Fire Safety Journal.-2009.-Vol. 44, Issue 1.-P. 88-95. DOI: 10.1016/j.firesaf.2008.03.009.

7. Zhu Pei, Wang Xishi, Wang Zhigang, Cong Haiyong, Ni Xiaomin. Experimental and numerical study on attenuation of thermal radiation from large-scale pool fires by water mist curtain // Journal of Fire Sciences. -2015.-Vol. 33, Issue 4. -P. 269-289. DOI: 10.1177/0734904115585796.

8. Dombrovsky L. A., Dembele S., Wen J. X. Shielding of fire radiation with the use of multi-layered water mist curtains: preliminary estimates // Computational Thermal Sciences: An International Journal.- 2016. -Vol. 8, Issue 4. -P. 371-380. DOI: 10.1615/ComputThermalScien.2016017601.

9. Turco M., Lhotsky P., Hadjisophocleous G. Investigation into the use of a water curtain over openings to prevent fire spread // MATEC Web of Conferences.-2016.-Vol. 46.-Article No. 04001.- 11 p. DOI: 10.1051/matecconf/20164604001.

10. Collin A., Lechene S., Boulet P., Parent G. Water mist and radiation interactions: application to a water curtain used as a radiative shield // Numerical Heat Transfer. Part A: Applications.-2010.-Vol. 57, Issue 8. -P. 537-553. DOI: 10.1080/10407781003744722.

11. Benbrik A., Cherifi M., Meftah S., Khelifi M. S., Sahnoune K. Contribution to fire protection of the LNG storage tank using water curtain // International Journal of Thermal and Environmental Engineering.- 2010. -Vol. 2, No. 2. -P. 91-98. DOI: 10.5383/ijtee.02.02.005.

12. Хадсон Р. Инфракрасные системы / Пер. с англ. -М. : Мир, 1972. -534 с.

13. Чохонелидзе А. Н., Галустов В. С., Холпанов Л. П., Приходько В. П. Справочник по распыливающим, оросительным и каплеулавливающим устройствам. - М. : Энергоатомиздат, 2002. - 608 с.

14. Медников Е. П. Турбулентный перенос и осаждение аэрозолей. -М. : Наука, 1981. -174 с.


Review

For citations:


Dushkin A.L., Lovchinskiy S.E., Ryazantsev N.N. Finely-dispersed water fire radiation screening. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2017;26(6):52-59. (In Russ.) https://doi.org/10.18322/PVB.2017.26.06.52-59

Views: 796


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)