Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search

MODELING OF THE FIRE-DANGEROUS MODES IN THE POWER SUPPLY NETWORK OF CARS FOR DECISION-MAKING WHEN CARRYING OUT THE FIRE INVESTIGATION

https://doi.org/10.18322/PVB.2016.25.09.45-51

Abstract

After arsons, the main reason for the fires on motor transport is emergency operation of operation of the power supply network (short circuit, overload of electricity cables and big transitional resistance). For Russia it is typical that the cars made 10-20 years ago constantly continue to be operated. The electrical wiring of such cars has a bad condition and often becomes a cause of the fire. Besides, even new cars are equipped with the additional alarm system, powerful musical and video equipment, systems of heating and ventilation, additional headlights. And contacts of the additional equipment often are made in the handicraft way that can lead to big transitional resistance and be a cause of the fire. Studying of nature of emergence and development of big transitional resistance, the techniques of an assessment of probability of emergence of the emergency operation, which connected with the big transitional resistance (BPS), leading to emergence of the fire in the car, will allow to create new recommendations, requirements in the field of fire safety which needs to be considered, to be changed taking into account a tendency of development of the motor transport. The accidents modes in the car power supply networks connected with big transition resistances are the most dangerous, as protection against their emergence does not exist, and development of big transition resistance can lead to sparking, short circuit and other ignition sources. At the same time, the initial reason of emergence of the fire is leveled, in process of the fire and suppression. In article, the stochastic model of the analysis of the emergency modes arising in the power supply network of cars is offered. The Markov model including several absorbing states will allow to calculate to what of the absorbing states the chain will get earlier (or later); in what of them process will stop more often and in what - is more rare. The developed model allows to analyses probability of emergence of the fire from the electric reasons connected with big transitional resistance that allows to make the correct conclusions by production of fire investigations.

About the Author

Yu. D. Motorygin
Санкт- Петербургский университет ГПС МЧС Росси
Russian Federation


References

1. Моторыгин Ю. Д. Математическое моделирование процессов возникновения и развития пожаров :монография/Подобщ. ред. В. С. Артамонова.-СПб.: С.-Петерб. ун-тГПСМЧСРоссии, 2011.

2. Пожары и пожарная безопасность в 2011 году : стат. сборник / Под общ. ред. В. И. Климкина.- М. : ВНИИПО, 2012.-137 с.

3. Новости пожарной безопасности / Научно-практический центр “Пожарная безопасность”. 2010-2016. URL: http://www.01-news.ru/stats.html (дата обращения: 04.02.2016).

4. Основные направления деятельности. Сайт ФГБУ ВНИИПО МЧС России. 2001-2016. URL: http://www.vniipo.ru/institut/tseli-zadachi-i-funktsii-instituta (дата обращения: 04.02.2016).

5. Fire Loss in the United States during 2011 / Michael J. Karter, Jr.- Quincy, MA : National Fire Protection Association, 2012.

6. Fire statistics Great Britain 2011 to 2012.-London : Department for Communities and Local Government, 2012.-65 p.

7. Хернер А., Риль Х.-Ю. Автомобильная электрика и электроника.-М. : ООО Изд-во “За рулем”, 2013. -624 с.

8. Пехотиков В. А., Смелков Г. И. Требования пожарной безопасности к электротехническим установкам : сб. нормативных документов. -М. : ВНИИПО, 2003. -Вып. 15. -508 с.

9. Аманбаев М. Т., Моторыгин Ю. Д. Моделирование чрезвычайных ситуаций на транспорте при производстве пожарно-технических экспертиз // Использование криминалистической и специальной техники в противодействии преступности : Междунар. науч.-практ. конф. - СПб. : С.-Петерб. ун-т МВД России, 2013.

10. Моторыгин Ю. Д., Косенко Д. В. Математическое моделирование развития горения автомобиля // Вестник Санкт-Петербургского университета Государственной противопожарной службы МЧС России. -2014.-№ 2. -С. 45-50.

11. Кемени Д., Снелл Д. Конечные цепи Маркова. -М. : Наука, 1970. -271 с.

12. Моторыгин Ю. Д. Математическое моделирование процессов возникновения и развития пожаров. -СПб. : С.-Петерб. ун-т ГПС МЧС России, 2011. -202 с.

13. Hurley M. J., Madrzykowski D. Evaluation of the Computer Fire Model DETACT-QS // Performance-Based Codes and Fire Safety Design Methods : Proceedings of 4th International Conference, March 20-22, 2002, Melbourne, Australia / Almand K., Coate C., England P., Gordon J. (eds.). - Melbourne, 2002.-Р. 241-252.

14. Merle G., Roussel J. -M., Lesage J. -J., Bobbio A., Vayatis N. Analytical calculation of failure probabilities in dynamic fault trees including spare gates // European Safety and Reliability Conference (ESREL 2010).-Rhodes, Greece, 2010.

15. Spiridonov I., Stepanyants A., Victorova V. Design testability analysis of avionic systems // Reliability: Theory and Applications (RT&A). -2012. -Vol. 7, No. 03(26).-P. 66-73.

16. Meng F. S. Comparing Birnbaum importance measure of system components // Probability in Engineering and Information Sciences. - 2004. - Vol. 18, No. 2. - P. 237-245. DOI: 10.1017/s0269964804182077.

17. Прогнозирование опасных факторов пожара : учеб. пособие /Ю.Д. Моторыгин, В. А. Ловчиков, Ф. А. Дементьев, Ю. Н. Бельшина. -СПб. : Астерион, 2013. -108 с.


Review

For citations:


Motorygin Yu.D. MODELING OF THE FIRE-DANGEROUS MODES IN THE POWER SUPPLY NETWORK OF CARS FOR DECISION-MAKING WHEN CARRYING OUT THE FIRE INVESTIGATION. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2016;25(9):45-51. (In Russ.) https://doi.org/10.18322/PVB.2016.25.09.45-51

Views: 472


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)