Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search

EXPERIMENTAL STUDY OF TEMPERATURE TRACES OF WATER DROPLETS, WATER FLOW MASSES AND AEROSOL FLOWS MOVING THROUGH HIGH-TEMPERATURE COMBUSTION PRODUCTS

https://doi.org/10.18322/PVB.2016.25.08.17-26

Abstract

The experimental investigations of temperature, varying in a trace of water droplets, water flow masses and aerosol flows, moving through high-temperature combustion products, were conducted. The temperature values of vapor-gas mixture in an area, corresponding to the trace of water droplets, moving through high-temperature combustion products (initial temperature values were 450-950 K) were measured by quick-response thermocouples (time of thermal delay was less than 1 sec). The objects of investigations were aerosol flows with droplet sizes, equal to Rd » 0.04÷0.40 mm, and droplet concentration, equal to gd » 3·10-5÷12·10-5 m3 of droplets/m3 of gas; single droplets with Rd » 1.5÷2.5 mm, and significant water flow masses with characteristic size of 22-30 mm. Application of the quick-response thermocouples allowed defining the ranges of maximal reduction of gaseous medium temperature Tg in a trace of extinguishing liquid according to a group of factors, such as a method of supplying of water into the combustion zone, characteristic size of the elements of liquid flow Rd , droplet concentration in a water flow gd , temperature of the combustion products Tg . The variation of combustion product temperature in a trace of motion of atomized flow, droplets and liquid flow masses was determined in the analysis of temperature trends, ranged from 15 K to 140 K. The values of preservation time t of low temperature of vapor-gas mixture in a trace of droplet flow, single droplets and significant liquid flow masses were determined relative to initial gas temperature: t » 4÷28 sec. It was experimentally defined that maximum values of time t correspond to supplying the atomized water, with characteristic sizes of elements, equal to Rd » 0.15÷0.30 mm, and concentration, equal to gd » 3·10-5÷12·10-5 m3 of droplets/m3 of gas, into the standardized fire. The conditions when the characteristics of temperature and concentration traces have significant influence on processes of evaporation and heat exchange between gases and moving liquid (with accumulation of liquid energy) were determined. The ascertained experimental data prove the earlier made theoretical hypothesis about sufficiently long periods of preservation the temperature traces of water droplets, even if they are small. The obtained experimental information become the basis for developing the method of the effective reduction of fire temperature (flame and combustion products) in the technologies of polydisperse aerosol fire extinguishing.

About the Authors

I. S. Voytkov
Национальный исследовательский Томский политехнический университет
Russian Federation


R. S. Volkov
Национальный исследовательский Томский политехнический университет
Russian Federation


O. V. Vysokomornaya
Национальный исследовательский Томский политехнический университет
Russian Federation


G. A. Chernova
Национальный исследовательский Томский политехнический университет
Russian Federation


A. V. Fadeev
Национальный исследовательский Томский политехнический университет
Russian Federation


References

1. Доррер Г. А., Якимов С. П., Васильев С. А. Прогнозирование динамики распространения лесных пожаров в России // Проблемы управления рисками в техносфере.-2010.-№ 4.-С. 65-67.

2. Москвилин Е. А. Применение авиации для тушения лесных пожаров // Пожарная безопасность. -2009. -№ 1. -С. 82-92.

3. Коршунов Н. Авиационное тушение лесных пожаров: эффектность репортажей и эффективность технологий // Авиапанорама. -2011. -№ 4. -С. 10-13.

4. Копылов Н. П., Хасанов И. Р., Кузнецов А. Е., Федоткин Д. В., Москвилин Е. А., Стрижак П. А., Карпов В. Н. Параметры сброса воды авиационными средствами при тушении лесных пожаров // Пожарная безопасность. -2015.-№ 2. -С. 49-55.

5. Konishi T., Kikugawa H., Iwata Y., Koseki H., Sagae K., Ito A., Kato K. Aerial firefighting against urban fire: Mock-up house experiments of fire suppression by helicopters // Fire Safety Journal.-2008.- Vol. 43, Issue 5. -P. 363-375. DOI: 10.1016/j.firesaf.2007.10.005.

6. Соковиков В. В., Тугов А. Н., Гришин В. В., Камышев В. Н. Автоматическое водяное пожаротушение с применением тонкораспыленной воды на электростанциях // Энергетик.-2008.-№ 6. -С. 37-38.

7. Сегаль М. Д. Использование тонкораспыленной воды для повышения противопожарной защиты кабельных сооружений АЭС // Проблемы безопасности и чрезвычайных ситуаций.-2011.- № 4. -С. 61-64.

8. Саламов А. А. Современная система пожаротушения “водяной туман” высокого давления // Энергетик. -2012.-№ 3. -С. 16-18.

9. Терпигорьев В. Водяной туман как средство защиты объектов культуры // Алгоритм безопасности. -2006.-№ 5. -С. 18-20.

10. Volkov R. S., Kuznetsov G. V., Strizhak P. A. Influence of the initial parameters of spray water on its motion through a counter flow of high-temperature gases // Technical Physics. - 2014. - Vol. 59, Issue 7. -P. 959-967. DOI: 10.1134/s1063784214070263.

11. Волков Р. С., Кузнецов Г. В., Стрижак П. А. Экспериментальное исследование интегральных характеристик испарения пресной и соленой воды при движении через пламя // Пожары и чрезвычайные ситуации: предотвращение, ликвидация. -2014. -№ 2. -С. 18-23.

12. СтрижакП. А. Численное исследование условий испарения совокупности капель воды при движении в высокотемпературной газовой среде // Пожаровзрывобезопасность.-2012.-Т. 21, № 8. -С. 26-31.

13. Кузнецов Г. В., Стрижак П. А. Влияние структуры распыленной воды на температуру и концентрацию продуктов горения // Пожарная безопасность. -2013. -№ 4. -С. 47-53.

14. Strizhak P. A. Influence of droplet distribution in a “water slug” on the temperature and concentration of combustion products in its wake // Journal of Engineering Physics and Thermophysics. - 2013. - Vol. 86, Issue 4. -P. 895-904. DOI: 10.1007/s10891-013-0909-9.

15. Keane R. D., Adrian R. J. Theory of cross-correlation analysis of PIV images // Applied Scientific Research. -1992.-Vol. 49, Issue 3.-P. 191-215. DOI: 10.1007/BF00384623.

16. Westerweel J. Fundamentals of digital particle image velocimetry // Measurement Science and Technology.- 1997.-Vol. 8, No. 12. -P. 1379-1392. DOI: 10.1088/0957-0233/8/12/002.

17. Hagiwara Y., Sakamoto S., Tanaka M., Yoshimura K. PTV measurement on interaction between two immiscible droplets and turbulent uniform shear flow of carrier fluid // Experimental Thermal and Fluid Science. -2002.-Vol. 26, Issue 2-4.-P. 245-252. DOI: 10.1016/s0894-1777(02)00133-4.

18. Dehaeck S., Van Parys H., Hubin A., Van Beeck J. P. A. J. Laser marked shadowgraphy: a novel optical planar technique for the study of microbubbles and droplets // Experiments in Fluids. - 2009. - Vol. 47, Issue 2. -P. 333-341. DOI: 10.1007/s00348-009-0668-8.

19. Akhmetbekov Y. K., Alekseenko S. V., Dulin V. M., Markovich D. M., Pervunin K. S. Planar fluorescence for round bubble imaging and its application for the study of an axisymmetric two-phase jet // Experiments in Fluids. -2010.-Vol. 48, Issue 4. -P. 615-629. DOI: 10.1007/s00348-009-0797-0.

20. Volkov R. S., Kuznetsov G. V., Kuibin P. A., Strizhak P. A. Weber numbers at various stages of water projectile transformation during free fall in air // Technical Physics Letters.-2015.-Vol. 41, Issue 10. -P. 1019-1022. DOI: 10.1134/s1063785015100314.

21. Janiszewski J. Measurement procedure of ring motion with the use of high speed camera during electromagnetic expansion // Metrology and Measurement Systems. - 2012. - Vol. 19, No. 4. - P. 797-804. DOI: 10.2478/v10178-012-0071-2.

22. Volkov R. S., Kuznetsov G. V., Legros J. C., Strizhak P. A. Experimental investigation of consecutive water droplets falling down through high-temperature gas zone // International Journal of Heat and Mass Transfer. -2016.-Vol. 95. -P. 184-197. DOI: 10.1016/j.ijheatmasstransfer.2015.12.001.


Review

For citations:


Voytkov I.S., Volkov R.S., Vysokomornaya O.V., Chernova G.A., Fadeev A.V. EXPERIMENTAL STUDY OF TEMPERATURE TRACES OF WATER DROPLETS, WATER FLOW MASSES AND AEROSOL FLOWS MOVING THROUGH HIGH-TEMPERATURE COMBUSTION PRODUCTS. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2016;25(8):17-26. (In Russ.) https://doi.org/10.18322/PVB.2016.25.08.17-26

Views: 401


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)