Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Fire safety of ammonia as a carbon-free fuel for cars and ships

https://doi.org/10.22227/0869-7493.2025.34.05.71-78

Abstract

Introduction. The paper substantiates the necessity of research in the field of fire safety of ammonia use as motor fuel. The relevance of the paper is due to the need to analyze the world experience of using ammonia for cars and ships. The purpose of the work is an analytical review of research in the field of fire safety of objects using ammonia as a motor fuel. At the same time, the main task is to identify gaps in the results of already conducted research and to develop proposals for further work.

Analysis of investigations in the area of the fire safety of an application of ammonia for cars and ships. Papers in international journals devoted to solving the problem of fire safety of ammonia use for cars and ships were analyzed. Research in this direction is carried out in many countries of the world, although there is still no wide practical implementation of their results. There are still no generally accepted international standards regulating the safety of ammonia use as motor vehicle and marine fuel, despite the existence of regulations for the industrial use of this gas. Unresolved problems in this area (safety distances, fire automation systems, design solutions, etc.) are noted.

Conclusions. Ammonia is a promising type of motor fuel for cars and ships. However, the results of works published in scientific press show that the elaboration of fire safety issues is insufficient for wide practical use, therefore it seems necessary to carry out additional research.

About the Author

Yu. N. Shebeko
All Russian Research Institute for Fire Protection of Ministry of Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters
Russian Federation

Yury N. SHEBEKO, Dr. Sci. (Eng.), Professor, Chief Researcher

VNIIPO, 12, Balashikha, Moscow Region, 143903

RSCI AuthorID: 47042, Scopus: 7006511704



References

1. Shebeko Yu.N. Fire safety of hydrogen fuel transport refueling infrastructure. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2024; 34(6):56-66. DOI: 10.22227/0869-7493.2024.33.06.56-66. EDN BWDUBB. (rus).

2. Shebeko Yu.N. Fire safety of hydrogen storage and transportation. Fire Safety. 2023; 1(100):17-26. DOI: 10.37657/vniipo.pb.2023.110.1.001. EDN JBMKKQ. (rus).

3. Gordienko D.M., Shebeko Yu.N. Fire and explosion safety of hydrogen energetics facilities. Occupational Safety in Industry. 2022; 2:7-12. DOI: 10.24000/0409-2961-2022-2-7-12. EDN FYZNQV. (rus).

4. Valera-Medina A., Xiao H., Owen-Jones M., David W.I.F., Bowen P.J. Amminia for power. Progress in Energy and Combustion Science. 2018; 69:63-102. DOI: 10/1016/j.pecs.2018.07.001. EDN VJIYIV.

5. Farhad S., Hamdullahpur F. Conceptual design of a novel ammonia-fueled portable solid oxide fuel sell system. Journal of Power Sources. 2010; 195(10):3084-3090. DOI: 10.1016/j.jpowsour.2009.11.115. EDN NWUPYF.

6. Fournier G.G.M., Cumming I.W., Hellgardt K. High performance direct ammonia solid oxide fuel cell. Journal of Power Sources. 2006; 162(1):198-206. DOI: 10.1016/j.jpowsour.2006.06.047. EDN KKRTNF.

7. Ma Q., Peng R., Lin Y., Gao J., Meng G. A high-performance ammonia-fueled solid oxide fuel cell. Journal of Power Sources. 2006; 161(1):95-98. DOI: 10.1016/j.jpowsour.2006.04.099. EDN KKRVSN.

8. Comotti M., Frigo S. Hydrogen generation system for ammonia-hydrogen fueled internal combustion engines. International Journal of Hydrogen Energy. 2015; 40(33):10673-10886. DOI: 10.1016/j.ijhydene.2015.06.080.

9. Jang H., Mujeeb-Ahmed M.P., Wang H., Park C., Hwang I., Jeong B. еt al. Regulatory gap analysis for risk assessment of ammonia-fueled ships. Ocean Engineering. 2023; 287(2):115751. DOI: 10.1016/j.oceaneng.2023.115751

10. Egerer J., Grimm V., Niazmand K., Runge P. The economics of global green ammonia trade — “Shipping Australian wing and sunshine to Germany”. Applied Energy. 2023; 334:120662. DOI: 10.1016/j.aplenergy.2023.120662. EDN KVLYQV.

11. Majaj K., Kupecki J., Malecha Z., Morawski A.W., Skrzypkiewicz M., Stanclic M. еt al. Ammonia as potential marine fuel : a review. Energy Strategy Reviews. 2022; 44:100926. DOI: 10.1016/j.esr.2022.100926. EDN YVIVAU.

12. Hansson J., Mansson S., Brynolf S., Grahn M. Alternative marine fuels: prospects based on multi-criteria decision analysis involving Swedish stakeholders. Biomass Bioenergy. 2019; 126(33):159-173. DOI: 10.1016/biomdioe.2019.05.008

13. Afif A., Radenahmad N., Cheok Q., Azad A.K., Shams S., Kim J.H., Azad A.K. Ammonia-fed fuel cells : a comprehensive review. Renewable and Sustainable Energy Reviews. 2016; 60:822-835. DOI: 10.1016/j.rser.2016.01.120. EDN WUWWAD.

14. Rathore S.S., Fini D., Kilkarni A.P., Giddey S., Bismas S. Direct ammonia solid-oxide fuel cells : a review of progress and prospects. International Journal of Hydrogen Energy. 2021; 46(71):35365-35384. DOI: 10.1016.2021.08.092. EDN CIVXOK.

15. Morlanes N., Katikaneni S.P., Paglieri S.N., Harale A., Solami B., Sarathy S.M. еt al. A technological roadmap to the ammonia energy economy: Current state and missing technologies. Chemical Engineering Journal. 2020; 408:127310. DOI: 10.1016/cej.2020.127310. EDN QBPFXP.

16. Rivarolo M., Riveros-Godoy G., Magistri L., Massardo A.F. Clean hydrogen and ammonia synthesis in Paraguay from the Itaipu 14 GW hydroelectric plant. Chemical Engineering. 2019; 3(4):87. DOI: 10.3390/chemengineering3040087

17. Ishimoto Yu., Voldsund M., Neksa P., Roussanaly S., Berstad D., Gardarsdottir S.O. Large-scale production and transport of hydrogen from Norway to Europe and Japan: Value chain analysis and comparison of liquid hydrogen and ammonia as energy carries. International Journal of Hydrogen Energ. 2020; 45(58):32865-32883. DOI: 10.1016/j.ijhydene.2020.09.017. EDN NMWFJF.

18. Rouwenhorst K.H.R., Van den Ham A.G.J., Mul G., Kersten S.R.A. Islanded ammonia power systems: Technology review & conceptual process design. Renewable and Sustainable Energy Reviews. 2019; 114:109339. DOI: 10.1016/j.rser.2019.109339

19. Lamb K.E., Dolan M.D., Kennedy D.F. Ammonia for hydrogen storage: A review of catalytic ammonia decomposition and hydrogen separation and purification. International Journal of Hydrogen Energy. 2019; 44(7):3580-3593. DOI: 10.1016/j/ijhydene.2018.12.024. EDN WVXWOF.


Review

For citations:


Shebeko Yu.N. Fire safety of ammonia as a carbon-free fuel for cars and ships. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2025;34(5):71-78. (In Russ.) https://doi.org/10.22227/0869-7493.2025.34.05.71-78

Views: 10


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)