Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Experimental evaluation of the efficiency of functional materials containing microencapsulated perfluoro(2-methyl-3-pentanone) to ensure fire safety of lithium-ion batteries of electrical vehicle

https://doi.org/10.22227/0869-7493.2025.34.05.47-63

Abstract

Introduction. The increasing demand for electric vehicles requires new methods for fire protection of lithium-ion batteries (LIB). Flammable electrolyte solvents and unstable cathode and anode materials are the reason for their fire hazard and thermal runaway. Currently, only passive protection systems are used to suppress LIB fires at the initial stage. Methods of active fire extinguishing are not used. The development of new methods that allow the use of active fire extinguishing at the initial stage of a fire is a pressing task.

Aims and purposes. To evaluate the effectiveness of functional materials containing microencapsulated fire extinguishing agent perfluoro(2-methyl-3-pentanone) (microcapsules with FK 5-1-12) for LIB fire suppression. To evaluate the effectiveness of functional materials containing microencapsulated gas extinguishing agent (GEA) perfluoro(2-methyl-3-pentanone) (microcapsules with FC 5-1-12) for LIA fire suppression.

Materials and methods. The fire of the LIB was suppressed using functional materials containing 50 wt. % microcapsules with FK 5-1-12. Assemblies of NMC cells (30Ah) in quantities 2 and 6 cells were selected for testing. Thermal runaway and ignition of the LIB were initiated by external heating.

Results and discussion. An experimental evaluation of the use of functional materials containing microcapsules with FK 5-1-12 to ensure fire safety of LIB was carried out. It was found that combustion was not detected for the 2 cells LIB assembly even when external ignition sources were used. The fire extinguishing agent was preventively released from the material and inhibited fire. There was a non-flammable atmosphere inside and outside the assembly. No combustion or significant temperature increase were also observed during the experiment for the 6 cells LIB assembly protected by fire-extinguishing sheets. A slowdown in thermal runaway (from 15 sec to 1.5 minutes) was noted without the use of standard cooling systems.

Conclusions. Functional material containing microcapsules with FK 5-1-12 suppress the combustion of LIB. They did not allow open fire, significantly slowed down heat transfer and the rate thermal runaway from cell to cell due to the absence of radiant heat exchange and partial heat removal.

About the Authors

D. M. Yakunov
State Research Center of the Russian Federation Central Research Institute of Automobiles and Motor Vehicles “NAMI”
Russian Federation

Dmitry M. YAKUNOV, Head of the Sector for Functional Testing of Energy Storage System

Automotornaya St., 2, Moscow, 125438



А. А. Sertsova
LLC “MFA TECH”
Russian Federation

Alexandra А. SERTSOVA, Cand. Sci. (Chem.), Chief Executive Officer

Nagatinskaya St., 3А, build. 5, оffice 428, Moscow, 117105

ResearcherID: AAK-1619-2021, Scopus: 35099465500



S. V. Krasilnikov
LLC “MFA TECH”
Russian Federation

Sergey V. KRASILNIKOV, Chief Technical Officer

Nagatinskaya St., 3А, build. 5, оffice 428, Moscow, 117105

Scopus: 53866562800



A. F. Kolbasov
SUE “Moscow Metro”
Russian Federation

Alexey F. KOLBASOV, Cand. Sci. (Eng.), Head of Laboratory Testing and Certification Department Directorate for Development of Electric Vehicles

Ivan Franko St., 14, Moscow, 121351

Scopus: 57198424244



O. V. Dvoenko
the State Fire Academy of the Ministry of Russian Federation for Civil Defense, Emergencies and Elimination on Consequences of Natural Disasters
Russian Federation

Oleg V. DVOENKO, Cand. Sci. (Eng.), Docent, Head of Department of the Fire Fighting Equipment

Borisa Galushkina St., 4, Moscow, 129366

Scopus: 57321841400



References

1. Bajolle H., Lagadic M., Louvet N. The future of lithium-ion batteries: Exploring expert conceptions, market trends, and price scenarios. Energy Research and Social Science. 2022; 93:102850. DOI: 10.1016/j.erss.2022.102850. EDN MRAUUQ.

2. Catenacci M., Verdolini E., Bosetti V., Fiorese G. Going electric: Expert survey on the future of battery technologies for electric vehicles. Energy Policy. 2013; 61:403-413. DOI: 10.1016/j.enpol.2013.06.078

3. Spotnitz R., Franklin J. Abuse behavior of high-power, lithium-ion cells. Journal of Power Sources. 2003; 113(1):81-101. DOI: 10.1016/S0378-7753(02)00488-3. EDN BCZJGB.

4. Galushkin N.E., Yazvinskaya N.N., Galushkin D.N. Causes and mechanism of thermal runaway in lithium-ion batteries, contradictions in the generally accepted mechanism. Journal of Energy Storage. 2024; 86:111372. DOI: 10.1016/j.est.2024.111372. EDN ZWGUHD.

5. Sertsova А.А., Krasilnikov S.V. Functional fire extinguishing materials to protect lithium-ion batteries. Current issues of fire safety : Proceeding of the XXXV International scientific and practical conference. Moscow, 2023; 561-568. EDN BZEZYY. (rus.).

6. He D., Wang J., Peng Ya., Li B., Feng Ch., Shen L. et al. Research advances on thermal runaway mechanism of lithium-­ion batteries and safety improvement. Sustainable Materials and Technologies. 2024; 41:e01017. DOI: 10.1016/j.susmat.2024.e01017. EDN JSLMEH.

7. Kolbasov A.F., Endachev D.V., Olkhovsky I.A., Dvoenko O.V. Issues of operational and environmental safety in the aftermath of an accident of vehicles with high-voltage components. IOP Conference Series: Earth and Environmental Science. 2021 International Symposium “Earth Sciences: History, Contemporary Issues and Prospects, ESHCIP 2021”. IOP Publishing Ltd, 2021; 012093. DOI: 10.1088/1755-1315/867/1/012093. EDN QIXNAJ.

8. Kolbasov A.F., Karpukhin K., Dvoenko O.V., Olkhovsky I.A. The main approaches to the system of fire extinguishing and elimination of consequences of accidents of electric vehicles. IOP Conference Series: Earth and Environmental Science. 2021 International Symposium “Earth Sciences: History, Contemporary Issues and Prospects, ESHCIP 2021”. IOP Publishing Ltd, 2021; 012092. DOI: 10.1088/1755-1315/867/1/012092. EDN JWTTXC.

9. Ouyang D., Weng J., Wang Zh., Wang J., Chen M., Huang Q.A. Review on the Thermal Hazards of the Lithium-Ion Battery and the Corresponding Countermeasures. Applied Sciences. 2019; 9(12): 483. DOI: 10.3390/app9122483. EDN VNYHQQ.

10. Kharlamenkov A.S. Systems for protecting cells and batteries with lithium-ion batteries. Part 1. Pozharovzryvobez­opasnost/Fire and explosion safety. 2022; 30(4):76-79. EDN KPOESB. (rus).

11. Qin P., Sun J., Yang X., Wang Q. Battery thermal management system based on the forced-air convection : a review. eTransportation. 2021; 7:100097. DOI: 10.1016/j.etran.2020.100097

12. Wu W., Wang S., Wu Wei, Chen K., Hong S., Lai Y. A critical review of battery thermal performance and liquid based battery thermal management. Energy Conversion and Management. 2019; 182:262-281. DOI: 10.1016/j.­enconman.2018.12.051. EDN AHUJOD.

13. Wang H., Guo Ya., Ren Y., Yeboah S., Wang J., Long F. et al. Investigation of the thermal management potential of phase change material for lithium-ion battery. Applied Thermal Engineering. 2024; 236:121590. DOI: 10.1016/j.applthermaleng.2023.121590. EDN LHASQV.

14. Mahmud Md., Rahman K.S., Rokonuzzaman Md., Habib A.K.M.A., Islam Md R., Motakabber S.M.A. et al. Lithium-­­ion battery thermal management for electric vehicles using phase change material : a review. Results in Engineering. 2023; 20:101424. DOI: 10.1016/j.rineng.2023.101424. EDN MQETDN.

15. Kharlamenkov A.S. Systems for protecting cells and batteries with lithium-ion batteries. Part 2. Pozharovzryvobez­opasnost’/Fire and explosion safety. 2022; 31(5):83-86. EDN LMPEPG.

16. Sertsova A.A., Krasilnikov S.V. Microencapsulated fire extinguishing agents and functional materials based on them for the protection of lithium-ion batteries. Fire Protection of Materials and Structures SPBPU FPM-2023 : Collection of abstracts of reports from the 1st international scientific and practical conference. St. Petersburg, 2023; 153-155. EDN HWUHAC. (rus).

17. Orendorff Ch.J., Roth E.P., Nagasubramanian G. Experimental triggers for internal short circuits in lithium-ion cells. Journal of Power Sources. 2011; 196(15):6554-6558. DOI: 10.1016/j.jpowsour.2011.03.035

18. Zhang L., Jin K., Sun J., Wang Q. A Review of Fire-Extinguishing Agents and Fire Suppression Strategies for Lithium-Ion Batteries Fire. Fire Technology. 2022; 60:817-858. DOI: 10.1007/s10694-022-01278-3

19. Kharlamenkov A.S. Advanced methods of extinguishing lithium-ion batteries. Part 1. Pozharovzryvobezopasnost’/Fire and Explosion Safety. 2023; 32(1):89-96. EDN NDGMYU. (rus).

20. Si Rong-jun, Liu De-qi, Xue Shao-qian. Experimental Study on Fire and Explosion Suppression of Self-ignition of Lithium Ion Battery. Procedia Engineering. 2018; 211:629-634. DOI: 10.1016/j.proeng.2017.12.057

21. Liu Y., Duan Q., Xu J., Chen H., Lu W., Wang Q. Experimental study on the efficiency of dodecafluoro-2-methyl­pentan-3-one on suppressing lithium-ion battery fires. RSC Advances. 2018; 8(73):42223-42232. DOI: 10.1039/C8RA08908F

22. Wang H., Sun Q., Guo Ju., Xie S., He Yu., Chen X. The Efficiency of Aqueous Vermiculite Dispersion Fire Extinguishing Agent on Suppressing Three Typical Power Batteries. Journal of Electrochemical Energy Conversion and Storage. 2021; 18(2):020901. DOI: 10.1115/1.4048368. EDN AHECZO.

23. Pagliaro J.L., Linteris G.T. Hydrocarbon flame inhibition by C6F12O (Novec 1230): Unstretched burning velocity measurements and predictions. Fire Safety Journal. 2017; 87:10-17. DOI: 10.1016/j.firesaf.2016.11.002

24. Said A.O., Stoliarov S.I. Analysis of effectiveness of suppression of lithium ion battery fires with a clean agent. Fire Safety Journal. 2021; 121:103296. DOI: 10.1016/j.firesaf.2021.103296. EDN MPWPYZ.

25. Liang Ch., Jin K., Liu P., Wang Ch., Xu J., Li H. et al. The Efficiency of Perfluorohexanone on Suppressing Lithium-Ion Battery Fire and Its Device Development. Fire Technology. 2023; 59(3):1283-1301. DOI: 10.1007/s10694-023-01365-z. EDN CXOZBK.

26. Han Zh., Zhang X., Yu Yu., Du Zh., Hwang H.-Y., Liu L.L. et al. Experimental Investigation of Fire Extinguishing of a Full-Size Battery Box with FK-5-1-12. Fire Technology. 2022; 59:1269-1282. DOI: 10.1007/s10694-022-01273-8

27. Sun H., Zhang L., Duan Q., Wang Sh., Sun Sh., Sun J. et al. Experimental study on suppressing thermal runaway propagation of lithium-ion batteries in confined space by various fire extinguishing agents. Process Safety and Environmental Protection: Transaction of the institution of chemical engineers, part B. 2022; 167:299-307. DOI: 10.1016/j.psep.2022.09.016. EDN PWZJZG.

28. Wang Q., Li K., Wang Y., Chen H., Duan Q., Sun J. The Efficiency of Dodecafluoro-2-Methylpentan-3-One on Suppressing the Lithium Ion Battery Fire. Journal of Electrochemical Energy Conversion and Storage. 2018; 15(4):041001. DOI: 10.1115/1.4039418

29. Zhang L., Ye F., Li Y., Chen M., Meng X., Xu J. et al. Experimental Study on the Efficiency of Dodecafluoro-2-Methylpentan-3-One on Suppressing Large-Scale Battery Module Fire. Fire Technology. 2022; 59:1247-1267. DOI: 10.1007/s10694-022-01322-2

30. Lebkowski А. Electric Vehicle Fire Extinguishing System. Przeglad Elektrotechniczny. 2017; 93(1):329-332. DOI: 10.15199/48.2017.01.77

31. Guo Y., Wang X., Gao J., He Zh., Yao S., Zhou X. et al. In situ extinguishing mechanism and performance of self-­portable microcapsule fire extinguishing agent for lithium-ion batteries. Journal of Energy Storage. 2024; 93:112393. DOI: 10.1016/j.est.2024.112393. EDN CYKPRS.

32. Sertsova A., Krasilnikov S., Lee S-S., Kim J-S. The effect of epoxy resin on the properties of encapsulated fire extinguishing agent. Fire Science and Engineering. 2019; 33(5):19-27. DOI: 10.7731/KIFSE.2019.33.5.019

33. Zhang W., Wu L., Du J., Tian J., Li Ya., Zhao Y. et al. Fabrication of a microcapsule extinguishing agent with a core-shell structure for lithium-ion battery fire safety. Materials Advances. 2021; 2(14):4634-4642. DOI: 10.1039/d1ma00343g. EDN CYYING.

34. Yuan L., Dubaniewicz T., Zlochower I., Thomas R., Rayyan N. Experimental study on thermal runaway and vented gases of lithium-ion cells. Process Safety and Environmental Protection: transaction of the institution of chemical engineers, part B. 2020; 144:186-192. DOI: 10.1016/j.psep.2020.07.028. EDN ZDEYFW.

35. Seo D.M., Chalasani D., Parimalam B.S., Kadam R., Nie M., Lucht B.L. Reduction Reactions of Carbonate Solvents for Lithium Ion Batteries. ECS Electrochemistry Letters. 2014; 3(9):91-93. DOI: 10.1149/2.0021409

36. Yoshida H., Fukunaga T., Hazama T., Terasaki M., Mizutani M., Yamachi M. Degradation mechanism of alkyl carbonate solvents used in lithium-ion cells during initial charging. Journal of Power Sources. 1997; 68(2):311-315. DOI: 10.1016/S0378-7753(97)02635-9. EDN AJDYDF.

37. Shurtz R.C. A Thermodynamic Reassessment of Lithium-Ion Battery Cathode Calorimetry. Journal of The Electrochemical Society. 2020; 167(14):140544. DOI: 10.1149/1945-7111/abc7b4. EDN CQQTIJ.


Review

For citations:


Yakunov D.M., Sertsova А.А., Krasilnikov S.V., Kolbasov A.F., Dvoenko O.V. Experimental evaluation of the efficiency of functional materials containing microencapsulated perfluoro(2-methyl-3-pentanone) to ensure fire safety of lithium-ion batteries of electrical vehicle. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2025;34(5):47-62. (In Russ.) https://doi.org/10.22227/0869-7493.2025.34.05.47-63

Views: 11


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)