Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Thermal runaway of lithium-ion batteries: analysis of toxic emissions and fire hazards

https://doi.org/10.22227/0869-7493.2025.34.04.83-90

Abstract

The article addresses the Thermal runaway of various lithium-ion batteries (LIB) and related fire hazards. Information about the composition of gaseous products released during thermal destruction of LIB components was summarized with a focus on the extreme toxicity of carbon monoxide and hydrogen fluoride. Experimental concentrations of these substances were analyzed and matched against effective standards (Maximum Permissible Concentrations, IDLH, AEGL), taking into account the volume of premises. It is found that even one LIB cell can cause permissible levels of CO and HF to be exceeded if ventilation is insufficient. It is recommended to contribute specific scenarios, involving LIBs, to the fire risk analysis and conduct more research on combustion modeling.

About the Author

A. S. Kharlamenkov
Automation Systems and Communication, the State Fire Academy of the Ministry of Russian Federation for Civil Defense, Emergencies and Elimination on Consequences of Natural Disasters
Russian Federation

Aleksandr S. KHARLAMENKOV, Deputy Head of Department of Special Electrical Engineering

Borisa Galushkina St., 4, Moscow, 129366

RSCI AuthorID: 763967



References

1. Mossali E., Picone N., Gentilini L., Rodriguez O., Pérez J.M., Colledani M. Lithium-ion batteries towards circular economy : a literature review of opportunities and issues of recycling treatments // Journal of Environmental Management. 2020. No. 264. Р. 110500. DOI: 10.1016/j.jenvman.2020.110500

2. Itani K., De Bernardinis A. Review on New-Generation Batteries Technologies: Trends and Future Directions // Energies. 2023. No. 16 (22). P. 7530. DOI: 10.3390/en16227530. EDN QBBJWT.

3. Guo R., Yang Y., Huang X.L., Zhao Ch., Hu.B., Hou. F. еt al. Recent Advances in Multifunctional Binders for High Sulfur Loading Lithium–Sulfur Batteries // Advanced Functional Materials. 2023. No. 34 (1). DOI: 10.1002/adfm.202307108.EDNHDDVON.

4. Lee B.-J., Zhao Ch., Yu J.-H., Kang T.-H., Park H-Y. Kang. J. et al. Development of high-energy non-aqueous lithium–sulfur batteries via redox-active interlayer strategy // Nature Communications. 2022. No. 13 (4629). DOI: 10.1038/s41467-022-31943-8

5. Mahne N., Fontaine O., Thotiyl M.O., Wilkening M., Freunberger A.A. Mechanism and performance of lithium–oxygen batteries — a perspective // Chemical Science. 2017. No. 8 (10). Pp. 6716–6729. DOI: 10.1039/C7SC02519J

6. Ferraro M., Tumminia G. Techno-economics Analysis on Sodium-Ion Batteries: Overview and Prospective // Emerging Battery Technologies to Boost the Clean Energy Transition. 2024. Рp. 259–266. DOI: 10.1007/978-3-031-48359-2_14

7. Andersen H.F., Foss C.E. L., Voje J., Tronstad R., Mokkelbost T., Vullum P.E. et al. Silicon-Carbon composite anodes from industrial battery grade silicon // Scientific Reports. 2019. No. 9 (14814). DOI: 10.1038/s41598-019-51324-4

8. Liu X., Zhu X., Pan D. Solutions for the problems of silicon–carbon anode materials for lithium-ion batteries // Royal Society Open Science. 2018. No. 5 (6). Р. 172370. DOI: 10.1098/rsos.172370

9. Liu Y., Shao R., Jiang R., Song X., Jin Zh., Sun L. A review of existing and emerging binders for silicon anodic Li-ion batteries // Nano Research. 2023. No. 16 (5). Pp. 6736–6752. DOI: 10.1007/s12274-022-5281-7. EDN FBREOD.

10. Zhou K., Fang Y., Bao M., Fan W., Ren J., He P. et al. Self-Extinguishing Polyimide Sandwiched Separators for High-Safety and Fast Charging Lithium Metal Batteries // Journal of Power Sources. 2024. No. 610. Р. 234734. DOI: 10.1016/j.jpowsour.2024.234734. EDN FXLSHU.

11. Скундин А.М., Кулова Т.Л., Григорьева О.Ю. Литий-ионные аккумуляторы : учебное пособие. М. : Издательство МЭИ, 2022. 99 с.

12. Chen Y., Kang Y., Zhao Y., Wang L., Liu J., Li Y. et al. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards // Journal of Energy Chemistry. 2020. No. 59. Pp. 83–89. DOI: 10.1016/j.jechem.2020.10.017. EDN DVVEBL.

13. Golubkov A.W., Fuchs D., Wagner J., Wiltsche H., Stangl Ch., Fauler G. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes // RSC Advances. 2014. No. 4 (7). Pp. 3633–3642. DOI: 10.1039/C3RA45748F

14. Qi Ch., Wang H., Li M., Li Ch., Li Y., Shi Ch. et al. Research on the Thermal Runaway Behavior and Flammability Limits of Sodium-Ion and Lithium-Ion Batteries // Batteries. 2025. No. 11 (1). P. 24. DOI: 10.3390/batteries11010024. EDN WXMKZO.

15. Yuan Y., Ma Q., Zhang X., Zhang F., Song X., Xin H. Influence of cathode materials on thermal characteristics of lithium-ion batteries // Frontiers in Chemistry. 2024. No. 12. Р. 13248440. DOI: 10.3389/fchem.2024.1324840. EDN HBTTFO.

16. Ribière P., Grugeon S., Morcrette M., Boyanov S., Laruelle, S., Marlair G. Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry // Energy & Environmental Science. 2012. No. 5 (1). Pp. 5271–5280. DOI: 10.1039/C1EE02218K

17. Chen M., Zhou D., Chen X., Zhang W., Liu J. Yuen R. еt al. Investigation on the thermal hazards of 18650 lithium ion batteries by fire calorimeter // Journal of Thermal Analysis and Calorimetry. 2015. No. 122. Рp. 755–763. DOI: 10.1007/s10973-015-4751-5

18. Mazzaro M., Russo P., Longobardo G., Di Bari C., Cancelliere P. Fire Behaviour of NMC Li-ion Battery Cells // Proceedings of the Ninth International Seminar on Fire and Explosion Hazards. Saint Petersburg, 2019. No. 2. Рp. 881–890. DOI: 10.18720/spbpu/2/k19-136

19. Мокряк А.В., Мокряк А.Ю., Мельник А.А. Анализ остатков литий-ионных аккумуляторов после теплового разгона методом сканирующей электронной микроскопии // Международный научно-исследовательский журнал. 2023. № 4 (130). С. 1–9. DOI: 10.23670/IRJ.2023.130.63. EDN RHSTQD.

20. Claassen M., Bingham B., Chow J.C., Watson J.G., Wang Y., Wang X. Characterization of Lithium-Ion Battery Fire Emissions. Part 1: Chemical Composition of Fine Particles (PM2.5) // Batteries. 2024. No. 10 (9). P. 301. DOI: 10.3390/batteries10090301. EDN AHMGFL.

21. Claassen M., Bingham B., Chow J.C., Watson J.G., Wang Y., Wang X. Characterization of Lithium-Ion Battery Fire Emissions. Part 2: Particle Size Distributions and Emission Factors // Batteries. 2024. No. 10 (10). P. 366. DOI: 10.3390/batteries10100366. EDN KLNQHV.

22. Han J.Y., Jung S. Thermal Stability and the Effect of Water on Hydrogen Fluoride Generation in Lithium-Ion Battery Electrolytes Containing LiPF6 // Batteries. 2022. No. 8 (7). P. 61. DOI: 10.3390/batteries8070061. EDN ONJDBE.

23. Larsson F., Andersson P., Blomqvist P., Mellander B.-Е. Toxic fluoride gas emissions from lithium-ion battery fires // Scientific Reports. 2017. No. 7 (1). Pp. 1–13. DOI: 10.1038/s41598-017-09784-z. EDN MCPGWD.

24. Teng Zh., Lv Ch. Detection toward early-stage Thermal runaway gases of Li-ion battery by semiconductor sensor // Frontiers in Chemistry. 2025. No. 13. DOI: 10.3389/fchem.2025.1586903

25. Tschirschwitz R., Bernardy Ch. Harmful effects of lithium-ion battery Thermal runaway: scale-up tests from cell to second-life modules // RSC Advances. 2023. No. 13 (30). Pp. 20761–20779. DOI: 10.1039/d3ra02881j.EDN VXTQDC.


Review

For citations:


Kharlamenkov A.S. Thermal runaway of lithium-ion batteries: analysis of toxic emissions and fire hazards. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2025;34(4):83-90. (In Russ.) https://doi.org/10.22227/0869-7493.2025.34.04.83-90

Views: 7


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)