Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Assessment of fire and explosion safe use of the anion exchange resin AV-17-8 in nitrate form in a sorption column

https://doi.org/10.22227/0869-7493.2025.34.04.32-41

Abstract

Introduction. Ion exchange resins are widely used at nuclear fuel cycle facilities. During the exploitation of resins in nitric acid solutions, its self-decomposition at high temperatures is not excluded, which can lead to accidental situations. It is known that anion exchange resins in nitrate form decompose with heat release with the value higher than 300 J/g at the temperatures above 220 °С, which may pose a potential danger to technologies of extraction, separation and purification of radionuclides.

Aims and objectives. In this study, the problem was set to assess boundary conditions of fire and explosion safe use of AV-17-8 anion exchange resins in a sorption column. The objectives included the following steps: investigation of thermal stability of the anionite by differential scanning calorimetry; assessment of the kinetic parameters of the ongoing oxidation reactions; modeling of the process of the heat release in a sorption column. Based on the data obtained, the assessment of the boundary condition for a thermal explosion occurrence in equipment with AV-17-8 was carried out.

Methodology. For the investigation of the samples under study thermal stability, the heating was conducted in synchronous thermal analyzer STA 449 F3 Jupiter. Subsequent data analysis was performed in the Arks specialized software CJSC “Khiminform”, the stages of which included primary processing (base line subtraction, deconvolution of the heat flow signal, determination of thermal effects values), and modeling of the heat release in the column filled with sorbent with certain geometric and thermophysical parameters.

Results and discussion. It was determined by differential scanning calorimetry that the AV-17-8 resin in nitrate form decomposes in two stages at the temperature ranges of 100–200 and 200–320 °С with the heat release values of 148 ± 13 and 425 ± 43 J/g respectively. For these two exothermic effects, the kinetic parameters of the anionite decomposition, with the use of which the boundary temperatures of a thermal explosion in the sorption column depending on its radius are determined.

Conclusion. The Arks software provides an opportunity to simulate conditions for a thermal explosion occurrence in technological equipment. Considering the estimated parameters, it is possible to predict the development of uncontrolled exothermic reactions which determine fire and explosion safety of anion exchange resins application.

About the Authors

A. M. Koscheeva
Scientific and engineering centre for nuclear and radiation safety (STC NRS)
Russian Federation

Aleksandra M. KOSCHEEVA, Cand. Sci. (Chem.), Head of the Laboratory for Experimental Research, Division for Safety of Fuel Cycle Facilities

Malaya Krasnoselskaya st., 2/8 5, Moscow, 107140



K. V. Shelamov
Scientific and engineering centre for nuclear and radiation safety (STC NRS)
Russian Federation

Kirill V. SHELAMOV, junior researcher

Malaya Krasnoselskaya st., 2/8 5, Moscow, 107140



A. V. Ponizov
Scientific and engineering centre for nuclear and radiation safety (STC NRS)
Russian Federation

Anton V. PONIZOV, Cand. Sci. (Eng.), deputy director

Malaya Krasnoselskaya st., 2/8 5, Moscow, 107140



References

1. Brook B.W., Alonso A., Meneley D.A., Misak J., Blees T. et al. Why nuclear energy is sustainable and has to be part of the energy mix. Sustainable Materials and Technologies. 2014; 1-2:8-16. DOI: 10.1016/j.susmat.2014.11.001

2. Rodríguez-Penalonga L., Moratilla Soria B.Y. A review of the nuclear fuel cycle strategies and the spent nuclear fuel management technologies. Energies. 2017; 10(8):1235. DOI: 10.3390/en10081235

3. Glebov A.P. Development of nuclear power in Russia and the world with generation 3+ and 4 reactors. Problems of atomic science and technology series nuclear and reactor constants. 2020; 1:77-93. DOI: 10.55176/2414-1038-2020-1-77-93. EDN NZSJEN. (rus).

4. Adamov E.O., Asmolov V.G., Bolshov L.A., Ivanov V.K. Two-component nuclear power engineering. Herald Russian Academy of Sciences. 2021; 91(5):450-458. DOI: 10.31857/S0869587321050029. EDN OXNFZF. (rus).

5. Olenin Y.A., Il’gisonis V.I. Challenging scientific and technical problems of nuclear power. Herald of the Russian Academy of Sciences. 2019; 89(4):335-342. DOI: 10.31857/S0869-5873894335-342. EDN DLNNXZ. (rus).

6. Penzin R.A., Svitsov A.A. Development of Technologies for Handling Liquid Radioactive Waste of Nuclear Power Plants. Radioactive Waste. 2020; 4(13):90-98. DOI: 10.25283/2587-9707-2020-4-90-98. EDN BVKZTV. (rus).

7. Adamov E.O., Mochalov Y.S., Rachkov V.I., Khomyakov Y.S., Shadrin A.Y., Kascheev V.A. et al. Spent nuclear fuel reprocessing and nuclear materials recycling in two-component nuclear energy. Atomic energy. 2021; 130(1):28-34. EDN QSPXSB. (rus).

8. Abdel Rahman R.O., Metwally S.S., El-Kamash A.M. Life cycle of ion exchangers in nuclear industry: application and management of spent exchangers. Handbook of Ecomaterials. 2019; 5:3709-3732. DOI: 10.1007/978-3-319-68255-6_108. EDN TRIGLR.

9. Wang J., Wan Z. Treatment and disposal of spent radioactive ion-exchange resins produced in the nuclear industry. Progress in Nuclear Energy. 2015; 78:47-55. DOI: 10.1016/j.pnucene.2014.08.003. EDN URURSH.

10. Calmon C. Explosion hazards of using nitric acid in ion-exchange equipment Chemical engineering. 1980; 87(23):271-274.

11. Tulupov P.E., Polyanskiy N.G. Thermal Stability of Anion-exchange Resins. Russian Chemical Reviews. 1973; 42(9):754-771. DOI: 10.1070/RC1973v042n09ABEH002730 (rus).

12. Ostashkina Е.Е., Savkin А.Е. Scientific and technological justification of the choice of a method for conditioning spent radioactive ion exchange resins. Problems of nuclear science and technology. Series: materials science and new materials. 2020; 3(104):37-50. EDN CWAYAN. (rus).

13. Andreeva E.V., Kostov M.A., Nazemtseva G.I., Chuprynin S.A. The analysis and generalization experience of methods for wasted ion-exchanging resins processing. Power plants and technologies. 2015; 1(1):71-77. EDN VPNTTR. (rus).

14. Wang J., Wan Z. Treatment and disposal of spent radioactive ion-exchange resins produced in the nuclear industry. Progress in Nuclear Energy. 2015; 78:47-55. DOI: 10.1016/j.pnucene.2014.08.003. EDN URURSH.

15. Li J., Wang J. Advances in cement solidification technology for waste radioactive ion exchange resins : a review. Journal of hazardous materials. 2006; 135(1-3):443-448. DOI: 10.1016/j.jhazmat.2005.11.053. EDN KJXFMF.

16. Chun U.K., Choi K., Yang K.H., Park J.K., Song M.J. Waste minimization pretreatment via pyrolysis and oxidative pyrolysis of organic ion exchange resin. Waste Management. 1998; 18(3):183-196. DOI: 10.1016/S0956-053X(98)00020-8

17. Sorokin V.T., Demin A.V., Prohorov N.А., Velikina S.А. Storage of spent ion exchange resins of low and medium specific activity levels in containers of the NPC type without inclusion in the matrix. Nuclear and radiation safety journal. 2009; 4(54):19-22. EDN KXSFXF. (rus).

18. Petrov S.S., Gomenyuk I.V., Kornyushkina O.V., Matvеenko A.V., Rodin A.V., Shkurygin D.M. et al. Safety Assessment of a SIER Conditioning Method Based on SIER Dehydration (Dewatering). Radioactive Waste. 2024; 3(28):7-18. DOI: 10.25283/2587-9707-2024-3-7-18 (rus).

19. Rodin A.V., Shelamov K.V., Gezalyan L.V., Ponizov A.V., Sharafutdinov R.B. Estimation of conditions of self-ignition of dried anion-exchange resins in nitrate form. Nuclear and radiation safety journal. 2023; 3(109):5-19. DOI: 10.26277/SECNRS.2023.109.3.001. EDN PZPUJI. (rus).

20. Benin A.I. Software Package “Thermal Explosion” (TSS). Scientific Basis And Modelling. St. Petersburg, Liteo, 2017; 672. EDN KSKSTT. (rus).


Review

For citations:


Koscheeva A.M., Shelamov K.V., Ponizov A.V. Assessment of fire and explosion safe use of the anion exchange resin AV-17-8 in nitrate form in a sorption column. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2025;34(4):32-41. (In Russ.) https://doi.org/10.22227/0869-7493.2025.34.04.32-41

Views: 7


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)