Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Problems of ensuring reproducibility of measurements in the system of fire safety standards: Method II GOST 30244

https://doi.org/10.22227/0869-7493.2025.34.04.14-31

Abstract

Introduction. Proper assessment of the fire hazard of building materials is a critical stage in the design and operation of buildings. As glued laminated wood materials such as plywood are increasingly used in the interior and exterior of buildings, it is important to determine their behaviour during a fire.

The object and subject of the study. Specimens of flame-retardant plywood were selected as the object of the study. The subject of the study is the determination of the flammability group of this material.

The aim of the work. The aim of the work is to assess the convergence of test results conducted in various testing laboratories, using the example of the flammability index of hard-to-burn plywood and to develop recommendations for improving methodological approaches.

Materials and research method. The determination of the flammability group of refractory plywood was carried out in 10 accredited laboratories in accordance with GOST 30244–94 “Building materials. Methods of testing for flammability”. The following characteristics were investigated: flue gas temperature, surface damage area, mass loss by the specimen, and self-combustion time.

Results and discussion. The existing methodology for determining the flammability group does not ensure the reproducibility of measurement results. The proposed changes to GOST 30244–94 (standardization of gas, holders, calibrations) do not solve the problem of the lack of correlation between the test parameters and the physico-chemistry of combustion. The “damage” indicator is uninformative. It is necessary to evaluate heat generation, flame propagation velocity, gas toxicity, and other fire hazard parameters. Current flammability indicators and fire hazard classes do not reflect the actual danger of materials and cannot be used for fire safety rationing or fire development forecasting. One of the first steps to overcome existing problems may be the development of a unified classification standard based on a comprehensive assessment of these parameters.

Conclusions. The lack of reproducibility of results in different accredited laboratories indicates the need to revise and improve the regulatory framework.

About the Authors

E. Yu. Polishchuk
SBE PMiPIR TechnoNICOL Group
Russian Federation

Evgeny Yu. POLISHCHUK, Cand. Sci. (Eng.), Head of the department “Fire Safety of building materials and structures”

Gelyarovs­kogo St., 5, Moscow, 129110

ResearcherID: R-6837-2016



E. Yu. Kruglov
All-Russian Research Institute for Fire Protection of Ministry of Russian Federation for Civil Defence, Emergencies and Elimi­nation of Consequences of Natural Disasters
Russian Federation

Evgeny Yu. KRUGLOV, Cand. Sci. (Eng.), Leading Researcher

VNIIPO, 12, Bala­shikha, Moscow Region, 143903



V. A. Kudryashov
Research and Development Republican Unitary Enterprise for Construction BelNIIS Institute
Belarus

Vadim A. KUDRYASHEV, Cand. Sci. (Eng.), Leading Researcher

Skaryna St., 15 “B”, Minsk, 220076



V. S. Shoya
SBE PMiPIR TechnoNICOL Group
Russian Federation

Vladislav S. SHOYA, Head of the Fire Testing Laboratory

Vostochniy promuzel distr., 21, room 6H, Ryazan’, 390027



M. V. Gravit
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Marina V. GRAVIT, Cand. Sci. (Eng.), Associate Professor, Lead. scientific co-workers Laboratory of Mechanics of Multicomponent and Multiphase Media

Politekhnicheskaya St., 29, letter B, St. Petersburg, inner territory of the city, Municipal District Akademicheskaya, 195251

ResearcherID: B-4397-2014, Scopus: 56826013600



I. L. Kotlyarskaya
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Irina L. KOTLYARSKAYA, Jr. scientific co-workers Labo­ratory of Secure and Modular Structures

Politekhnicheskaya St., 29, letter B, St. Petersburg, inner territory of the city, Municipal District Akademicheskaya, 195251

ResearcherID: ABE-1858-2021, Scopus: 57208300172



References

1. Gu X., Ling Y. Research progress of aerogel materials in the field of construction. Alexandria Engineering Journal. 2024; 91:620-631. DOI: 10.1016/J.AEJ.2024.02.039

2. Vasileva I.L., Nemova D.V. Prospects of using aerogels in construction. AlfaBuild. 2018; 4(6):135-145. DOI: 10.34910/ALF.6.12

3. Baetens R., Jelle B.P., Gustavsen A. Aerogel insulation for building applications : a state-of-the-art review. Energy and Buildings. 2011; 4(43):761-769. DOI: 10.1016/j.enbuild.2010.12.012

4. Jin R. Research and application of graphene in construction. IET Conference Proceedings. 2024; 19:638-641. DOI: 10.1049/ICP.2024.4057

5. Khvorova N.M. Building materials of the future: graphene. Mezhdunarodnyj nauchno-issledovatel’skij zhurnal/International Research Journal. 2016; 1(43). DOI: 10.18454/IRJ.2016.43.052. EDN VJUMOX. (rus).

6. Deng S., Fan J., Yi B., Ye J., Li G. Effect of industrial multi-walled carbon nanotubes on the mechanical properties and microstructure of ultra-high performance concrete. Cement and Concrete Composites. 2025; 156:105850. DOI: 10.1016/J.CEMCONCOMP.2024.105850

7. Motta E.F.B., de Carvalho A.R., Barra J.G.D., Maciel I.O., de Oliveira T.M. Thermomechanical behavior of concretes with addition of non-functionalized and functionalized carbon nanotubes. Journal of Building Engineering. 2024; 96:110642. DOI: 10.1016/J.JOBE.2024.110642

8. Lesovik V., Fediuk R., Amran M., Vatin N., Timokhin R. Self-healing construction materials: The geomimetic approach. Sustainability. 2021; 16(13):9033. DOI: 10.3390/SU13169033

9. Vafaeva Kh.M., Vatin N.I., Kordas G. Self-healing building materials: The future of construction. AlfaBuild. 2023; 4(29):2912-2912. DOI: 10.57728/ALF.29.12

10. Kotov E.V., Nemova D., Sergeev V., Dontsova A., Koriakovtseva T., Andreeva D. Thermal Performance Assessment of Aerogel Application in Additive Construction of Energy-Efficient Buildings. Sustainability. 2024; 16(6):2398. DOI: 10.3390/SU16062398

11. Chen Z., Zhang W., Huang R., Dong Z., Chen C., Jiang L. еt al. 3D model-based terrestrial laser scanning (TLS) observation network planning for large-scale building facades. Automation in Construction. 2022; 144:104594. DOI: 10.1016/J.AUTCON.2022.104594

12. Kim M., Kim H. Optimal Pre-processing of Laser Scanning Data for Indoor Scene Analysis and 3D Reconstruction of Building Models. KSCE Journal of Civil Engineering. 2024; 1(28):1-14. DOI: 10.1007/S12205-023-2406-9

13. Kotlyarskaya I.L., Vatin N.I., Nemova D.V. Thermal Characteristics of a Modular Additive Enclosing Structure. Lecture Notes in Civil Engineering. 2024; 335:33-42. DOI: 10.1007/978-3-031-30570-2_4

14. Kotlyarskaya I., Iakovlev N., Vatin N., Nemova D. Modular energy-efficient enclosing structures with the aerogel thermal insulation : a review. AlfaBuild. 2022; 4(24):2402. DOI: 10.57728/ALF.24.2

15. Musarat M.A., Alaloul W.S., Rostam N.A.Q.A., Khan A.M. Substitution of workforce with robotics in the construction industry: A wise or witless approach. Journal of Open Innovation: Technology, Market, and Complexity. 2024; 4(10):100420. DOI: 10.1016/J.JOITMC.2024.100420

16. You K., Zhou C., Ding L., Wang Y. Construction Robotics in Extreme Environments: From Earth to Space. Engineering. 2025. DOI: 10.1016/J.ENG.2024.11.037

17. Zhao C., Chen J.Y., Sun T., Fan W., Sun X.Y., Shao Y. еt al. Robotic motion planning for autonomous in-situ construction of building structures. Automation in Construction. 2025; 171:105993. DOI: 10.1016/J.AUTCON.2025.105993

18. Pryadko I.P. Trends in modern green architecture: global and Russian experience. Economics and entrepreneurship. 2023; 11(160):1016-1024. DOI: 10.34925/EIP.2023.160.11.193. EDN MMJMUZ. (rus).

19. Priyanshu P., Anugya S. Embracing Sustainable Living : Modern Trend in Architectureю. IJFMR — International Journal For Multidisciplinary Research. 2024; 2(6):1-6. DOI: 10.36948/IJFMR.2024.V06I02.16403

20. Kostina E.K., Dudchenko M.Y., Myronenko O.V. Modern trends in architecture. Green architecture as a form of efficient architecture energy. IOP Conference Series: Materials Science and Engineering. 2019; 3(698):033048. DOI: 10.1088/1757-899X/698/3/033048. EDN PZSJHV.

21. Patkó C., Adamik P., Pásztory Z. The Effect of Wooden Building Materials on the Indoor Air Quality of Houses. E3S Web of Conferences. 2024; 514. DOI: 10.1051/E3SCONF/202451404003

22. Eom Y.G. Wood and engineering wood as environment — friendly building materials. Air Cleaning Technology. 2007; 2(20):26-49.

23. Biryukov V.G., Mishkov S.N., Sobolev A.V. Fire-proof adhesive-bonded wood-based materials. Fires and emergencies: prevention, elimination. 2014; 3:28-30. EDN SXJPLN. (rus).

24. Biryukov V.G., Mishkov S.N., Sobolev A.V. Study of fire-protecting properties of hardly-combustible plywood used in structures of passenger cars. VNIIZHT bulletin (railway research institute bulletin). 2010; 1(1):37-40. EDN LHQAQJ. (rus).

25. Trushkin D.V. Problems of classification of construction materials on fire hazard. Part 2. Comparative analysis of experimental methods for fire hazard assessment of construction materials accepted in Russia and the European Union countries. Determination of combustibility for construction materials. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2014; 4(23):24-32. EDN SCXYRZ. (rus).

26. Gravit M.V., Nedryshkin O.V., Vaytitskiy A.A., Shpakova A.M., Nigmatullina D.G. Fire technical characteristics of building materials in the European and Russian regulatory documents. Problems of harmonization of research methods and classification. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2016; 10(25):16-29. DOI: 10.18322/PVB.2016.25.10.16-29. EDN XCNSNZ. (rus).

27. Khasanov I.R., Gravit M.V., Kosachev A.A., Pekhotikov A.V., Pavlov V.V. Harmonization of European and Russian regulatory documents establishing general requirements for fire resistance testing methods for building structructions and the use of temperature curves that take into account real fire conditions. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2014; 3(23):49-57. EDN SFOCFF. (rus).

28. Zhang Z., Zhou A., Shi Z., Zhang H., He X., Wang Y. et al. Explaining relationships between chemical structure and tar-rich coal pyrolysis products yield based on Pearson correlation coefficient. Fuel. 2025; 395:135029. DOI: 10.1016/J.FUEL.2025.135029

29. García-Bertrand R., Baringo L., García-Cerezo Á. Introduction to probability theory. Encyclopedia of Electrical and Electronic Power Engineering. 2023; 1(1-3):734-746. DOI: 10.1016/B978-0-12-821204-2.00016-7

30. Shmakov A.G., Korobeynichev O.P., Chernov A.A., Polishchuk E.Yu., Hoholko V.S., Kirilyuk A.V. et al. Improvement the metrological support of the conformity assessment system for determining the combustibility index of building materials. Modern fireproof materials and technologies : collection of materials of the IV International Scientific and practical conference dedicated to the 30th anniversary of the Ministry of Emergency Situations of Russia. 2020; 128-130. EDN DZTBXP. (rus).

31. Balakin V.M., Polishchuk E.Y. Nitrogen-phosphorus flame retardants for wood and wood composite materials : literature review. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2008; 2(17):43-51. URL: https://cyberleninka.ru/article/n/azot-fosforsoderzhaschie-antipireny-dlya-drevesiny-i-drevesnyh-kompozitsionnyh-materialov-literaturnyy-obzor/viewer (rus).

32. Jiang J., Li J., Hu J., Fan D. Effect of nitrogen phosphorus flame retardants on thermal degradation of wood. Construction and Building Materials. 2010; 12(24):2633-2637. DOI: 10.1016/J.CONBUILDMAT.2010.04.064

33. Peck G. The Decomposition of Polyurethane and Fire Retardants : a Review. Preprints. 2023. DOI: 10.20944/PREPRINTS202311.1646.V1

34. Trushkin D.V., Korolchenko O.N., Beltsova T.G. Flammability of wood treated with flame retardants. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2008; 1(17):29-33. URL: https://cyberleninka.ru/article/n/goryuchest-drevesiny-obrabotannoy-ognezaschitnymi-sostavami/viewer (rus).


Review

For citations:


Polishchuk E.Yu., Kruglov E.Yu., Kudryashov V.A., Shoya V.S., Gravit M.V., Kotlyarskaya I.L. Problems of ensuring reproducibility of measurements in the system of fire safety standards: Method II GOST 30244. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2025;34(4):14-31. (In Russ.) https://doi.org/10.22227/0869-7493.2025.34.04.14-31

Views: 8


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)