Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Investigation of the influence of ultrasound on the synthesis of TiO2 nanotubes by the hydrothermal method

https://doi.org/10.22227/0869-7493.2025.34.04.5-13

Abstract

Introduction. In this study, the synthesis of TiO2 nanotubes was carried out via the hydrothermal method, following two hours of ultrasonic pretreatment to evaluate the role of ultrasound in nanostructure formation. The hydrothermal process was conducted for 4, 6, 8, and 10 hours to investigate changes in morphology and crystalline phases.

Research aims and objectives. This study aimed to optimize the ultrasonic-hydrothermal method for synthesizing TiO2 nanotubes by reducing the reaction time without compromising the morphological and structural characteristics.

Materials and methods. The synthesized specimens underwent characterization by scanning electron micro­scopy (SEM) for morphological and dimensional analysis, while Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) served to identify phase composition and crystal structure.

Results and discussion. The results indicated that the obtained nanotubes exhibited lengths ranging from approxi­mately 808 to 1,226 nm and diameters from 172 to 242 nm. A sequential phase transformation occurred, beginning with the initial H2TiO3 phase, progressing through intermediate titanate phases (H2Ti3O7 and H2Ti6O13), and culminating in rutile crystallization at extended reaction times. The anatase phase appeared only in trace amounts throughout the process.

Conclusions. This study highlights the positive impact of ultrasonic pretreatment on the development of TiO2 nanotube structures and provides a scientific basis for optimizing process parameters in the fabrication of nanostructured TiO2 materials.

About the Authors

Zung Vu Van
Moscow Automobile and Road Construction State Technical University (MADI)
Russian Federation

Zung Vu VAN, postgraduate student of the Department “Technology of structural materials”

Leningradskiy Prospekt, 64, Moscow, 125319



Bach Nguyen Huy
Moscow Automobile and Road Construction State Technical University (MADI)
Russian Federation

Bach Nguyen HUY, student of the Faculty of Energy and Eco­logy

Leningradskiy Prospekt, 64, Moscow, 125319



R. I. Nigmetzyanov
Moscow Automobile and Road Construction State Technical University (MADI)
Russian Federation

Ravil I. NIGMETZYANOV, Cand. Sci. (Eng.), Associate Professor, Department of “Technology of Structural Materials”

Leningradskiy Prospekt, 64, Moscow, 125319



References

1. Wang B., Xue D., Shi Y., Xue F. Titania 1D nanostructured materials: synthesis, properties and applications. Nanorods, nanotubes and nanomaterials research progress. 2008; 163-201. EDN SRGJZJ.

2. Ubaid F., Naeem N., Shakoor R.A., Kahraman R., Mansour S., Zekri A. Effect of concentration of DOC loaded TiO2 nanotubes on the corrosion behavior of smart coatings. Ceramics International. 2019; 45(8):10492-10500. DOI: 10.1016/j.ceramint.2019.02.111

3. Mehmood U., Hussein I.A., Harrabi K., Mekki M.B., Ahmed S., Tabet N. Hybrid TiO2-multiwall carbon nanotube (MWCNTs) photoanodes for efficient dye sensitized solar cells (DSSCs). Solar Energy Materials and Solar Cells. 2015; 140:174-179. DOI: 10.1016/j.solmat.2015.04.004

4. Ge M., Li Q., Cao C., Huang J., Li S., Zhang S. еt al. One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Advanced science. 2016; 4(1):1600152. DOI: 10.1002/advs.201600152

5. Jafari S., Mahyad B., Hashemzadeh H., Janfaza S., Gholikhani T., Tayebi L. Biomedical applications of TiO2 nanostructures: recent advances. International journal of nanomedicine. 2020; 2020(15):3447-3470. DOI: 10.2147/IJN.S249441

6. Raj C.C., Prasanth R. Advent of TiO2 nanotubes as supercapacitor electrode. Journal of The Electrochemical Society. 2018; 165(9):345-358. DOI: 10.1149/2.0561809jes. EDN YIVEHJ.

7. Vuong D.D., Tram D.T.N., Pho P.Q., Chien N.D. Hydrothermal synthesis and photocatalytic properties of TiO2 nanotubes. In Physics and Engineering of New Materials. Berlin, Heidelberg, Springer Berlin Heidelberg, 2009; 127:95-101. DOI: 10.1007/978-3-540-88201-5_11

8. Wang D., Zhou F., Liu Y., Liu W. Synthesis and characterization of anatase TiO2 nanotubes with uniform diameter from titanium powder. Materials Letters. 2008; 62(12-13):1819-1822. DOI: 10.1016/j.matlet.2007.10.011

9. Cui L., Hui K.N., Hui K.S., Lee S.K., Zhou W., Wan Z.P. еt al. Facile microwave-assisted hydrothermal synthesis of TiO2 nanotubes. Materials Letters. 2012; 75:175-178. DOI: 10.1016/j.matlet.2012.02.004

10. Victoria Dimas B., Hernández Pérez I., Febles V.G., Arceo L.D.B., Parra R.S., Rivera Olvera J.N. еt al. Atomic-scale investigation on the evolution of TiO2-anatase prepared by a sonochemical route and treated with NaOH. Materials. 2020; 13(3):685. DOI: 10.3390/ma13030685

11. Alkanad K., Hezam A., Al-Zaqri N., Bajiri M.A., Alnaggar G., Drmosh Q.A. еt al. One-step hydrothermal synthesis of anatase TiO2 nanotubes for efficient photocatalytic CO2 reduction. ACS omega. 2022; 7(43):38686-38699. DOI: 10.1021/acsomega.2c04211

12. Moreno M., Arredondo M., Ramasse Q.M., McLaren M., Stötzner P., Förster S. еt al. ZnO nucleation into trititanate nanotubes by ALD equipment techniques, a new way to functionalize layered metal oxides. Scientific Reports. 2021; 11(1):7698. DOI: 10.1038/s41598-021-86722-0

13. El-Desoky M.M., Morad I., Wasfy M.H., Mansour A.F. Synthesis, structural and electrical properties of PVA/TiO2 nanocomposite films with different TiO2 phases prepared by sol–gel technique. Journal of Materials Science: Materials in Electronics. 2020; 31:17574-17584. DOI: 10.1007/s10854-020-04313-7

14. Valeeva A.A., Dorosheva I.B., Sushnikova A.A. Influence of high energy milling on titanium oxide Ti3O5 crystal structure. Hanosystems: Physics, Chemistry, Mathematics. 2023; 14(1):107-111. DOI: 10.17586/2220-8054-2023-14-1-107-111.EDN ZWDXYJ.

15. Ramanavicius S., Tereshchenko A., Karpicz R., Ratautaite V., Bubniene U., Maneikis A. еt al. TiO2-x/TiO2-structure based ‘self-heated’sensor for the determination of some reducing gases. Sensors. 2020; 20(1):74. DOI: 10.3390/s20010074

16. Ohtani B., Prieto-Mahaney O.O., Li D., Abe R. What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. Journal of Photochemistry and Photobiology A: Chemistry. 2010; 216(2-3):179-182. DOI: 10.1016/j.jphotochem.2010.07.024

17. Dimitrijevic N.M., Saponjic Z.V., Rabatic B.M., Poluektov O.G., Rajh T. Effect of size and shape of nanocrystalline TiO2 on photogenerated charges. An EPR study. The Journal of Physical Chemistry C. 2007; 111(40):14597-14601. DOI: 10.1021/jp0756395

18. Liao M.H., Hsu C.H., Chen D.H. Preparation and properties of amorphous titania-coated zinc oxide nanoparticles. Journal of Solid State Chemistry. 2006; 179(7):2020-2026. DOI: 10.1016/j.jssc.2006.03.042

19. Niu L., Zhao X., Tang Z., Lv H., Wu F., Wang X. еt al. Difference in performance and mechanism for methylene blue when TiO2 nanoparticles are converted to nanotubes. Journal of Cleaner Production. 2021; 297:126498. DOI: 10.1016/j.jclepro.2021.126498

20. Mino L., Spoto G., Ferrar A.M. CO2 capture by TiO2 anatase surfaces: a combined DFT and FTIR study. The Journal of Physical Chemistry C. 2014; 118(43):25016-25026. DOI: 10.1021/jp507443k


Review

For citations:


Van Z., Huy B., Nigmetzyanov R.I. Investigation of the influence of ultrasound on the synthesis of TiO2 nanotubes by the hydrothermal method. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2025;34(4):5-13. (In Russ.) https://doi.org/10.22227/0869-7493.2025.34.04.5-13

Views: 20


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)