

Explosion hazard of local space deformation
https://doi.org/10.22227/0869-7493.2025.34.03.34-39
Abstract
Introduction. The analysis of the explosion hazard of local changes in the time course in the Earth’s atmosphere (Poletaev, 2024) contributed to the development of relativistic research in the field of ensuring fire and explosion safety of facilities. The analysis was based on the dependence of the clock rate on the position of the clock in a uniformly accelerated reference frame (Einstein, 1907). It is reasonable to assume that local changes in the course of time are accompanied by local deformation of space (a visually observable change in the length of the ruler), which also becomes a sign of the appearance of local explosion hazard.
Problem statement and solution. The problem of the relationship (for a distant observer) of the relative changes in the movement of the clock and the length of the ruler associated with the clock, as they move in a homogeneous gravity field, is posed and solved. The basis of the solution was the law of equality of inert and heavy mass or correction of Newton’s law of gravitation, which allowed using a mathematical pendulum to establish the desired relationship. It is shown that, to the first approximation, the relative change in the length of the ruler is twice as large as the relative change in the movement of the clock (hereinafter referred to as the correction ration).
Discussion of the results and conclusions. Changes in the local area of the Earth’s atmosphere are characterized by an increase (decrease) in pressure in the case of a decrease (increase) in the length of a standard ruler placed in this area. Significant (by orders of magnitude) explosive local pressure changes occur with a relative change in the length of the ruler in the range of ± 2×10–12. It is noted that the obtained correction ratio makes it possible to calculate, in a first approximation, some effects of the theory of gravity, for example, the angle of refraction of a ray of light by a heavy mass or correction of Newton’s law of gravitation, without involving the known equations of the gravitational field (Einstein, 1915).
About the Author
N. L. PoletaevRussian Federation
Nikolay L. POLETAEV, Dr. Sci. (Eng.), Leading Researcher
VNIIPO, 12, Balashikha, Moscow Region, 143903
RSCI AuthorID: 1093620
References
1. Poletaev N.L. Explosion hazard of time course local change. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2024; 33(6):5-13. DOI: 10.22227/0869-7493.2024.33.06.5-13 (rus).
2. Auer L.H., Standish E.M. Astronomical Refraction: Computation for All Zenith Angles. Astronomical Journal. 2000; 119(5):2472-2474. DOI: 10.1086/301325
3. Lehn W.H., van der Werf S. Atmospheric refraction : a history. Applied Optics. 2005; 44(27):5624-5636. DOI: 10.1364/AO.44.005624
4. Kipping David. The “Terrascope”: On the Possibility of Using the Earth as an Atmospheric Lens. Publications of the Astronomical Society of the Pacific. Columbia University, 2019; 131(1005):114503. DOI: 10.1088/1538-3873/ab33c0
5. Huang X., Storfer C., Gu A., Ravi V. Discovering New Strong Gravitational Lenses in the DESI Legacy Imaging Surveys. The Astrophysical Journal. 2021; 909(1):27. DOI: 10.3847/1538-4357/abd62b
6. Lonappan A.I., Namikawa T., Piccirilli G., Diego-Palazuelos P. et al. LiteBIRD science goals and forecasts: a full-sky measurement of gravitational lensing of the CMB. Journal of Cosmology and Astroparticle Physics. 2024(06):009. DOI: 10.1088/1475-7516/2024/06/009
7. Martinez M.N., Gordon Y., Bechtol K., Cartwright G., Ferguson Peter S., Gorsuch M. et al. Finding Lensed Radio Sources with the Very Large Array Sky Survey. The Astrophysical Journal. 2025; 979(2):132. DOI: 10.3847/1538-4357/ad9c37
8. Einstein A. Uber das Relativitätsprinzip und die aus demselbon gezogenen Folgerungen. Radioaktivität u. Elektronik. 1907; 4:411. (ger).
9. Fok V.A. Theory of space, time and gravity. Moscow, GITTL, 1955; 504. (rus).
10. Pound R.V., Rebka G.A. Apparent Weight of Photons. Physical Review Letters. 1960; 4:337. DOI: 10.1103/PhysRevLett.4.337
11. Delva P., Puchades N., Schönemann E., Dilssner F., Courde C., Bertone S. et al. Gravitational Redshift Test Using Eccentric Galileo Satellites. Physical Review Letters. 2018; 121(23). DOI: 10.1103/physrevlett.121.231101
12. Kennedy C.J., Oelker E., Robinson J.M., Bothwell T., Kedar D., Milner W.R. et al. Precision Metrology Meets Cosmology: Improved Constraints on Ultralight Dark Matter from Atom-Cavity Frequency Comparisons. Physical Review Letters. 2020; 125(20). DOI: 10.1103/physrevlett.125.201302
13. Bothwell T., Kennedy C.J., Aeppli A., Kedar D. Resolving the gravitational redshift across a millimetre-scale atomic sample. Nature. 2022; 602:420-424. DOI: 10.1038/s41586-021-04349-714
14. RouraA. Atom interferometer as a freely falling clock for time-dilation measurements. Quantum Science and Technology. 2025; 10(2). DOI: 10.1088/2058-9565/ad9e2e
15. Einstein A. Über den Einfluss der Schwerkraft auf die Ausbreitung des Lichtes. Ann. Phys. 1911; 35:898-908.
16. D’Abramo G. On gravitational frequency shift derived from energy conservation. Advances in Physical Sciences. 2025; 68:87-93. DOI: 10.3367/UFNe.2024.10.039774 (rus).
17. Touboul P., Métris G., Rodrigues M., Bergé J., Robert A., Baghi Q. et al. MICROSCOPE mission: final results of the test of the Equivalence Principle. Physical Review Letters. 2022; 129:121102. DOI: 10.1103/PhysRevLett.129.121102
18. Landau L.D., Lifshitz E.M. Theoretical Physics: Mechanics. 4th ed. Moscow, Nauka, 1988; 135. (rus).
19. Einstein A. Die Relativitätstheorie. In book “Die Physik”. Unter Redaktion von E. Lechner. T. 3. Abt. 3. Bd. 1. Leipzig, Teubner. 1915; 703-713.
20. Einstein A. Erklärung der Perihelbeivegung der Merkur aus der allgemeinen Relativitätstheorie. Sitzungsber. preuss. Akad. Wiss, 1915; 47(2):831-839.
Review
For citations:
Poletaev N.L. Explosion hazard of local space deformation. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2025;34(3):34-39. (In Russ.) https://doi.org/10.22227/0869-7493.2025.34.03.34-39