Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Methodology of risk assessment in the system of integrated safety designed to prevent accidents and fires at explosion and fire hazardous enterprises

https://doi.org/10.22227/0869-7493.2025.34.01.59-69

Abstract

Introduction. Substantiation is presented and the direction for scientific research related to the study of new properties of the controlled system, in which a complex process of influence of the personnel of separate types of security and personnel of production structural units on the general state of the system of complex security is carried out.

Aim and objectives. The main objective is to develop a risk assessment methodology designed to improve the system of integrated safety at explosion and fire hazardous enterprises. To solve the three scientific tasks on the assessment of risks influencing the general condition of the system of complex safety, the following directions are defined:

  • to solve the first task requires obtaining the results of risk assessment in the influence of personnel working at the enterprises on the general state of the system;
  • to solve the second task requires the results of risk assessment of the impact of unimplemented measures on the overall state of the system;
  • to solve the third task requires the presentation of validity for the results obtained by solving the first and second scientific tasks.

Methods. For the decision of problems use of expert methods which will allow to transform qualitative characte­ristics in a quantitative measure is grounded. The use of the method of prioritization used together with the Gauss probability distribution functional is justified. It is suggested to use a five-digit proportionally decreasing matrix for risk assessment in case of non-compliance with the requirements of normative legal acts (NLA) and normative documents (ND).

Conclusions. 1. The justification for the application of a group of expert methods, the use of which allows to obtain indicators of the impact of personnel working at enterprises on the overall state of the system of integrated security is presented. 2. The example, allowing to prove adequacy of use of group of expert methods, their possibilities in use in practice for an estimation of risks is demonstrated.

About the Author

E. V. Gvozdev
Moscow State University of Civil Engineering (National Research University)
Russian Federation

Evgeniy V. GVOZDEV, Cand. Sci. (Eng.), Associate Professor of the Department of Mechanization, Automation and Robotization of Construction

Yaroslavskoe Shosse, 26, Moscow, 129337

RSCI AuthorID: 296055



References

1. Gvozdev E.V. Justification for choosing an expert method for assessing the state of the integrated safety system at industrial enterprises. Pozharovzryvobezopasnost’/Fire and explosion safety. 2024; 33(3):87-96. DOI: 10.22227/0869-7493.2024.33.03.87-96. EDN JTFBBF. (rus).

2. Gvozdev E.V. Development of a model for assessing the impact of personnel on the state of the integrated safety system created at industrial enterprises. Occupational safety in industry. 2024; 2:7-15. DOI: 10.24000/0409-2961-2024-2-7-15. EDN SJOLEO. (rus).

3. Ghosh S., Zaboli A., Hong J., Kwon J. An Integrated Approach of Threat Analysis for Autonomous Vehicles Perception System. IEEE Access. 2023; 11:14752-14777. DOI: 10.1109/ACCESS.2023.3243906. EDN UPQVKP.

4. Angermeier D., Wester H., Beilke K., Hansch G., Eichler J. Security Risk Assessments: Modeling and Risk Level Propagation. ACM Transactions on Cyber-Physical Systems. 2023; 7(1). DOI: 10.1145/3569458

5. Stroykov G.A., Babyr N.V., Ilin I.V., Marchenko R.S. System of comprehensive assessment of project risks in energy industry. International Journal of Engineering. 2021; 34(7). DOI: 10.5829/IJE.2021.34.07A.22

6. Blumberg V.A., Glushchenko V.F. Which solution is better? The method of prioritization. Leningrad, Lenizdat, 1982. 160 p. (rus).

7. Hernández-Orozco S., Zenil H., Riedel J., Uccello A., Kiani N.A., Tegnér J. Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces. Frontiers in Artificial Intelligence. 2021; 3. DOI: 10.3389/frai.2020.567356

8. Rekovets L., Kuzmenko L. Species as a system within a system. Novitates Theriologicae. 2021; 12(12):97-104. DOI: 10.53452/nt1218 (ukr).

9. Podolchak N., Tsygylyk N., Dziurakh Y. Building an effective personnel risks management system of the organization. Eastern-European Journal of Enterprise Technologies. 2022; 4(13-118):44-52. DOI: 10.15587/1729-4061.2022.262547. EDN AAOUFS.

10. Ramalho F.D., Silva I.S., Ekel P.Y., Martins C.A.P. da S., Bernardes P., Libório M.P. Multimethod to prioritize projects evaluated in different formats. MethodsX. 2021; 8(4):101371. DOI: 10.1016/j.mex.2021.101371

11. Matrosova E., Tikhomirova A., Matrosov N., Dmitriy K. Visualization of T. Saati Hierarchy Analysis Method. Advances in Intelligent Systems and Computing. 2021. DOI: 10.1007/978-3-030-65596-9_32

12. Alamdari A.M., Jabarzadeh Y., Adams B., Samson D., Khanmohammadi S. An analytic network process model to prioritize supply chain risks in green residential megaprojects. Operations Management Research. 2022; 16(9):1-23. DOI: 10.1007/s12063-022-00288-2

13. Anokhin A.M., Glotov V.A., Pavelyev V.V., Cherkashin A.M. Methods for determining coefficients of criteria importance. Automation and Telemechanics. 1997; 8:3-35. (rus).

14. Gvozdev E. Development of an integrated safety sistem for production facilities: the problem statement and the proposed solution. Reliability: Theory & Applications. 2024; 19:1(77):474-487. DOI: 10.24412/1932-2321-2024-177-474-487. EDN HWMWCS.

15. Srikrishnan V., Lafferty D.C., Wong T.E., Lamontagne J.R., Quinn J.D., Sharma S. et al. Uncertainty Analysis in Multi-Sector Systems: Considerations for Risk Analysis, Projection, and Planning for Complex Systems. Earth’s Future. 2022; 10(8). DOI: 10.1029/2021EF002644

16. Niazi M.A. Introduction to the modeling and analysis of complex systems : a review. Complex Adaptive Systems Modeling. 2016; 4(1). DOI: 10.1186/s40294-016-0015-x

17. Bjerga T., Aven T., Zio E. Uncertainty treatment in risk analysis of complex systems: The cases of STAMP and FRAM. Reliability Engineering and System Safety. 2016; 156(1). DOI: 10.1016/j.ress.2016.08.004

18. Gvozdev E.V. Intersystem interaction and communications in an integrated safety system designed to prevent accidents and fires at explosive and fire-hazardous enterprises. Occupational safety in industry. 2024; 12:40-46. DOI: 10.24000/0409-2961-2024-12-40-46. EDN DBGRSC. (rus).

19. Mbuli N., Mathonsi M., Seitshiro M., Pretorius J.H.C. Decomposition forecasting methods : a review of applications in power systems. Energy Reports. 2020; 6:298-306. DOI: 10.1016/j.egyr.2020.11.238

20. Bapat R.B. A max version of the Perron-Frobenius theorem. Linear Algebra and Its Applications. 1998; 275-276:3-18. DOI: 10.1016/S0024-3795(97)10057-X

21. Dvulit P., Savchuk S., Sosonka I. Accuracy estimation of site coordinates derived from GNSS-observations by non-­classical error theory of measurements. Geodesy and Geodynamics. 2021; 12(3). DOI: 10.1016/j.geog.2021.07.005

22. Gvozdev E.V. Assessment of the state of integrated security system at the enterprise using the priority setting method. Real Estate: Economics, Management. 2024; 2:33-36. EDN HEAOJB.


Review

For citations:


Gvozdev E.V. Methodology of risk assessment in the system of integrated safety designed to prevent accidents and fires at explosion and fire hazardous enterprises. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2025;34(1):59-69. (In Russ.) https://doi.org/10.22227/0869-7493.2025.34.01.59-69

Views: 85


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)