Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search

Calculation of the optimal escape route from the “Krasnoyarsk Pillars” National Park in case of a forest fire

https://doi.org/10.22227/0869-7493.2024.33.06.26-47

Abstract

Introduction. The “Krasnoyarsk Pillars” National Park is a popular holiday destination that attracts many tourists from all over the world. The park’s location in a forest makes it vulnerable to forest fires. A tourist memo on fire safety rules indicates not to get into a ring of fire or to be in the path of a serious forest fire. The process of ensuring fire safety for tourists in the Park was not considered within the framework of the Federal Law of 24.11.1996 Nо. 132-FZ (as amended on 13.06.2023) “Fundamentals of Tourist Activity in the Russian Federation”. The law in Art. 7 directly indicates that a tourist is obliged to observe personal safet.rules during the trip, but also defines the list of Emergencies Ministry services that will be involved in rescuing a tourist in an emergency. In this regard, in order to ensure the personal safety of a tourist, it is important to develop optimal evacuation routes and notify about them in the event of a forest fire. Preserving human life and health is a primary task of the State.

Aims and objectives. The study aims to determine the fastest and therefore safest, evacuation route from the Park, taking into account the terrain features, distance to safe zones and multiple intersections of trails. The purpose of this study is to calculate the optimal evacuation route from the “Krasnoyarsk Pillars” National Park in the event of a forest fire, taking into account territorial features and obstacles. The optimal evacuation route exists under sufficient optima­lity conditions determined from the solution of the optimization problem in real time upon actual detection of a forest fire.

Methods. Achieving the set purpose is realized by an algorithm in the developed computer programme. It finds the shortest evacuation routes by solving the optimization problem of determining the minimum. To solve the problem, Dijkstra’s algorithm is used to find the shortest paths in the graph. As part of the research, the territory of the national park is modelled as a graph. The vertices of the graph are key points (lookout points, forks in paths, exits to roads), and the edges are paths and roads connecting these points.

Results. As a result of the research, a route was calculated and laid out, reflecting the optimal evacuation distance on the map of the area, which allows visitors to effectively evacuate themselves in the event of a forest fire so ensure their personal safety. Consequently, the Ministry of Emergency Situations can organize the evacuation process of tourists so make the tourist’s process of ensuring their personal safety optimal.

Conclusions. The optimal evacuation routes from the “Krasnoyarsk Pillars” National Park in case of a forest fire are calculated. This is an important tool for ensuring the personal safety of tourists and park employees. The results of the research can be used to optimize warning, evacuation and preparation for emergency situations in the future.

About the Authors

S. N. Masaev
Siberian State University of Science and Technology named after acad. M.F. Reshetnev
Russian Federation

Sergey N. MASAEV, Cand. Sci. (Eng.), Assistant Professor

31, pr-t them. newspapers Krasnoyarsk Worker, Krasnoyarsk, 660000



V. A. Shnayder
Siberian State University of Science and Technology named after acad. M.F. Reshetnev
Russian Federation

Victoria A. SHNAYDER, Master’s degree

31, pr-t them. newspapers Krasnoyarsk Worker, Krasnoyarsk, 660000



References

1. Shashi Shekhara, Kwang Soo Yanga, Venkata M.V. Gunturia, Lydia Manikondaa, Dev Olivera et al. Experiences with evacuation route planning algorithms. International Journal of Geographical Information Science. 2012; 26(12):­­2253-2265. DOI: 10.1080/13658816.2012.719624

2. Furyaev I.V., Zlobina L.P. Conditions of occurrence and spread of fires in forest areas of the Krasnoyarsk Territory. Conifers of the boreal zone. 2017; 1-2:66-74. DOI: 10.15372/SJFS20230602 (rus).

3. McGee T.K. Evacuating First Nations during wildfires in Canada. Fire Safety Journal. 2021; 120. DOI: 10.1016/j.firesaf.2020.103120

4. Krotov V.F., Lagosha B.A., Lobanov S.M., Danilina N.I., Sergeev S.I. Fundamentals of the theory of optimal control : textbook for economic universities. Ed. by V.F. Krotov. Moscow, Higher School, 1990; 430. (rus).

5. Anne Ganteaume, Renaud Barbero, Marielle Jappiot, Eric Maillе. Understanding future changes to fires in southern Europe and their impacts on the wildland-urban interface. Journal of Safety Science and Resilience. 2021; 2. DOI: 10.1016/j.jnlssr.2021.01.001

6. Ioannis Zikeloglou, Efthimios Lekkas, Stylianos Lozios, Maria Stavropoulou. Is early evacuation the best and only strategy to protect and mitigate the effects of forest fires in WUI areas? A qualitative research on the residents’ response during the 2021 forest fires in NE Attica, Greece. International Journal of Disaster Risk Reduction. 2023; 88. DOI: 10.1016/j.ijdrr.2023.103612

7. Weissbrot I.A., Yamskikh G.Yu., Chernov V.I., Orlova O.S. The role of geoinformation technologies in the development of ecological tourism in the krasnoyarsk destination. Geographical environment and living systems. 2022; 1:93-109. DOI: 10.18384/2712-7621-2022-1-93-109 (rus).

8. Gunya A.N., Kolbovsky E.Yu., Gayrabekov U.T. Cartographic and geoinformation support for sustainable development of mountain regions. INTERCARTO. INTERGIS. 2019; 25(1):47-65. DOI: 10.35595/2414-9179-2019-1-25-47-65. EDN UKOVIE. (rus).

9. Mohamad Hassan Ansari, Masoud Bijani, Enayat Abbasi, Imaneh Goli. Determinants of local community participation in forest fire management in the northern Iran. International Journal of Disaster Risk Reduction. 2024; 107:104478. DOI: 10.1016/j.ijdrr.2024.104478

10. Eva Dodsworth. Geographic Information Systems. Reference Module in Social Sciences. 2024; 1:415-427. DOI: 10.1016/B978-0-323-95689-5.00126-7

11. Apanovich Z.V. Using adjacency matrices to visualize large graphs. Russian Digital Libraries Journal. 2019; 22(1):2-36. DOI: 10.26907/1562-5419-2019-22-1-2-36 (rus).

12. Kurapov S.V., Davidovsky M.V. Computational methods for determining graph invariants. International Journal of Open Information Technologies. 2021; 9(2):1-8. (rus).

13. Orlovsky S.N., Karnaukhov A.I., Sokolova V.A., Orekhovskaya A.A., Markov V.A., Krivonogova A.S. Mathematical description of the spread of forest fire. System methods and technologies. 2022; 4(56):100-104. DOI: 10.18324/2077-5415-2022-4-100-104 (rus).

14. Perminov V.A. Mathematical modeling of the occurrence of crown and mass forest fires : author’s abstract dis. … Doctor of Physics and Mathematics Sciences. Tomsk, 2010; 40. (rus).

15. Terentyeva O.A. Mathematical modeling of forest fire prevention based on the theory of Markov processes : abstract of thesis dis. …cand. tech. Sciences. Omsk, 2023; 22. (rus).

16. Faizrakhmanov G.P. Forecasting the spread of a forest fire based on a posteriori modeling of its non-stationary dynamics : dis. …cand. tech. Sciences. Irkutsk, 2006; 149. (rus).

17. Jason, Melvin Siever, Alvin Valentino, Kristien Margi Suryaningrum, Rezki Yunanda. Dijkstra’s algorithm to find the nearest vaccine location. Procedia Computer Science. 2023; 216(3):5-12. DOI: 10.1016/j.procs.2022.12.105

18. Yesy Diah Rosita, Erly Ekayanti Rosyida, Muhammad Adik. Rudiyanto Implementation of Dijkstra Algorithm and Multi-Criteria DecisionMaking for Optimal Route Distribution. Procedia Computer Science. 2019; 161:378-385. DOI: 10.1016/j.procs.2019.11.136

19. Balzotti L., Franciosa P.G. Non-crossing shortest paths lengths in planar graphs in linear time. Discrete Applied Mathe­matics. 2024; 346. DOI: 10.2139/ssrn.4167477

20. Bliznyakova E.A., Kulikov A.A., Kulikov A.V. Comparative analysis of methods for finding the shortest path in a graph. Architecture, Construction, Transport. 2022; 1:80-87. DOI: 10.31660/2782-232X-2022-1-80-87. EDN OOHLSV. (rus).

21. Krutko D.A., Buryachenko V.V. The problem of finding the shortest path in three-dimensional space on the territory of the torgashinsky ridge. Actual Problems of Aviation and Cosmonautics. 2022; 2:1452-144. URL: https://cyberleninka.ru/article/n/problema-poiska-kratchayshego-puti-v-trehmernom-prostranstve-na-territorii-torgashinskogo-hrebta (rus).

22. Arkhipova O.O., Kaplunov A.N., Shevyrev L.Yu. The solution of the transport problem by the Dijkstra algorithm. Trends in the Development of Science and Education. 2021; 69-2:29-32. DOI: 10.18411/lj-01-2021-51. EDN QKZHTZ. (rus).

23. Kolosova E.S., Popova S.V. Transport problem as a method for solving economic problems. Student Bulletin : electron. scientific magazine. 2020; 24(122). URL: https://studvestnik.ru/journal/stud/herald/122 (rus).

24. Zhukova T.V., Gladkikh D.A. Program for visualization of graph algorithms. Current Problems in Teaching Mathematics, Computer Science and Informatization of Education : Proceedings of the international scientific and practical conference dedicated to the 120th anniversary of the birth of A.N. Kolmogorov. 2023; 116-121. (rus).

25. Mezhensky D.V., Petrov V.V. Influence of wind speed on fire spread. Features of extinguishing. Modern Safety Issues : collection of works of the II University scientific and technical conference of young researchers. Volgograd, 2024; 65-68. EDN RXERTW. (rus).


Review

For citations:


Masaev S.N., Shnayder V.A. Calculation of the optimal escape route from the “Krasnoyarsk Pillars” National Park in case of a forest fire. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2024;33(6):26-47. (In Russ.) https://doi.org/10.22227/0869-7493.2024.33.06.26-47

Views: 654


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)