Preview

Prospects of using an aqueous medium in a metastable phase state to prevent combustible gas fires

https://doi.org/10.22227/0869-7493.2024.33.04.97-107

Abstract

Introduction. One of the main problems of the fire safety system of energy facilities is the prevention of combustible gas fires. An analysis of existing fire prevention systems showed low efficiency of their operation. In order to prevent combustible gas fires, the use of an aqueous medium in a metastable phase state is proposed in this work.

Purpose. Investigation of the characteristics of an aqueous medium in a metastable phase state to prevent combustible gas fires in closed volumes.

Objectives. An analysis of existing means of the gas fire prevention system. The calculations substantiate the possibility of using an aqueous medium in a metastable phase state to prevent fires of flammable gases in closed volumes. Modelling the process of phlegmatization of methane in a closed volume by an aqueous medium in a metastable phase state and determining the optimal parameters of its supply.

Materials and methods. The determination of the need to use a new means of preventing gas fires at energy facilities was justified using the method of analysis and synthesis. To substantiate the possibility of preventing methane fires in a closed volume, mathematical modelling based on the Pyrosim hardware and software complex was applied.

Theoretical bases. To calculate the minimum phlegmatizing concentration, Hess’s law and the theory of branched-chain combustion processes were applied.

Results and discussions. Based on the calculations performed, the number of technical means of supply for different degrees of room leakage was established. The required number of barrels depends linearly on the volume of the room. It is worth noting that when a certain leakage coefficient is reached, which will correspond to the supply of an aqueous medium in a metastable phase state to an open space, the number of barrels will take the maximum value for a given volume. Mathematical modelling has established that it is advisable to install devices for feeding an aqueous medium in a metastable phase state on the side surfaces, and the achievement of phlegmatizing concentrations occurs within 10 seconds from the moment of feeding.

Conclusions. The analysis method has established that the existing fire prevention systems are not effective enough, since in some cases they can cause a fire. A method for preventing fires of combustible gases by aqueous medium in a metastable phase state in closed volumes at energy facilities is proposed and theoretically substantiated. The calculation of the required number of technical means of supplying an aqueous medium in a metastable phase state, depending on the volume of the room and the leak coefficient, is performed. The use of the Pyrosim software and hardware complex confirmed the correctness of the calculations performed and allowed to establish the optimal method of supplying an aqueous medium in a metastable phase state to the volume of the engine room of the thermal power plant.

About the Authors

R. V. Khalikov
The State Fire Academy of the Ministry of Russian Federation for Civil Defense, Emergencies and Elimination on Consequences of Natural Disasters
Russian Federation

Rinat V. KHALIKOV, Senior Lecturer

Boris Galushkin St., 4, Moscow, 129366

RSCI AuthorID: 1045928



V. V. Roenko
The State Fire Academy of the Ministry of Russian Federation for Civil Defense, Emergencies and Elimination on Consequences of Natural Disasters
Russian Federation

Vladimir V. ROENKO, Cand. Sci. (Eng.), Professor, Professor of the Department of Fire Engineering as part of the Educational and Scientific Complex of Fire and Rescue Equipment

Boris Galushkin St., 4, Moscow, 129366

RSCI AuthorID: 810145



I. R. Begishev
The State Fire Academy of the Ministry of Russian Federation for Civil Defense, Emergencies and Elimination on Consequences of Natural Disasters
Russian Federation

Ildar R. BEGISHEV, Dr. Sci. (Eng.), Professor, Professor of the Department of Combustion Processes and Environmental Safety

Boris Galushkin St., 4, Moscow, 129366

RSCI AuthorID: 51507



T. N. Khalikova
The State Fire Academy of the Ministry of Russian Federation for Civil Defense, Emergencies and Elimination on Consequences of Natural Disasters
Russian Federation

Tatyana N. KHALIKOVA, Student of the Post-Graduate Course

Boris Galushkin St., 4, Moscow, 129366

RSCI AuthorID: 1168933



A. D. Korolchenko
Moscow State University of Civil Engineering (National Research University)
Russian Federation

Anton D. KOROLCHENKO, Head of the Testing Sector of the Explosion Safety Research Center of the Institute of Integrated Safety in Construction, Senior Lecturer at the Department of Integrated Safety in Construction

26 Yaroslavskoe Shosse, Moscow, 129337

RISС AuthorID: 890113, Scopus: 57215919375, ResearcherID: E-3295-2017



References

1. Chistyakov T.I., Roenko V.V., Khramtsov S.P. On eliminating chlorine leakage in the arctic zone of the Russian federation using technology of water environment in a meta-stable phase state. Civil defense on guard of peace and security : Materials of the VIII International Scientific and Practical Conference dedicated to the World Civil Defense Day defense. In 5 parts, Part 2. Moscow, March 1, 2024. Moscow, Academy of State Fire Service, 2024; 104-109. EDN VHREOU. (rus).

2. Roenko V.V., Khalikov R.V. Fire and explosion safety of enclosed spaces of gas-compressor stations. Fires and Emergencies: Prevention, Elimination. 2020; 1:30-35. DOI: 10.25257/FE.2020.1.30-35 (rus).

3. Azatyan V.V. Features of the physicochemical mechanisms and kinetic laws of combustion, explosion, and detonation of gases. Kinetics and Catalysis. 2020; 61(3):291-311. DOI: 10.31857/S0453881120030041 EDN: YMXTTZ (rus).

4. Liu H., Wang F. Research on N2-inhibitor-water mist fire prevention and extinguishing technology and equipment in coal mine goaf. PLoS ONE. 2019; 14(9):1-21. DOI: 10.1371/journal.pone.0222003

5. Azatyan V.V., Wagner G.Gg., Vedeshkin G.K. Suppression of detonations by efficient inhibitors. Gaseous and Heterogeneous Detonations. Moscow, ENAS Publ., 1999; 331-336.

6. Fleming J.W., Williams B.A., Sheinson R.S. Fleming suppression effectiveness of aerosols: the effect of size and flame type. Navy Technology Center for Safety and Survivability Combustion Dynamics Section. 2019; 21. DOI: 10.6028/NIST.SP.984.4

7. Khalikov R.V. The use of flame inhibitors for volumetric fire extinguishing of gas compressor stations. Proceedings of the I International Scientific conference “The role of fire services in solving non-traditional security threats”. Vietnam, Institute of Fire Safety, SRV, 2020; 1535-1540. (rus).

8. Shmakov A.G., Korobeinichev O.P., Shvartsberg V.M., Yakimov S.A., Knyazkov D.A., Komarov V.F., Sakovich G.V. Testing ogranophosphorus, organofluorine, and metal-containing compounds and solid-propellant gas-generating compositions doped with phosphorus-containing additives as effective fire suppressants. Combustion, Explosion, and Shock Waves. 2006; 6:10. URL: https://www.elibrary.ru/item.asp?id=16757038 (accessed: 12.05.2024). (rus).

9. Korobeinichev O.P., Shmakov A.G., Chernov A.A., Shvartsberg V.M., Kutsenogiy K.P., Markov V.I. Application of aerosol technoligy and non-volatile effective fire suppressants for fire-fighting of various types of fires. Interexpo Geo-Siberia. 2012; 3:10. URL: https://www.elibrary.ru/item.asp?id=17980207 (accessed: 15.04.2024). (rus).

10. Vysokomornaya O.V., Markov A.O., Nazarov M.N., Strizhak P.A., Yanov S.R. Numerical study of the influence of water atomization conditions on the temperature in the wake of a “Water projectile”. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. Geo Assets Engineering. 2013; 4. URL: https://cyberleninka.ru/article/n/chislennoe-issledovanie-vliyaniya-usloviy-raspyleniya-vody-na-temperaturu-v-slede-vodyanogo-snaryada (accessed: 12.05.2024). (rus).

11. Strizhak P.A. Numerical analysis of diffusion and convection heat and mass transfer processes at the moving of water drops through high combustion products. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2013; 7:11-21. URL: https://cyberleninka.ru/article/n/chislennyy-analiz-diffuzionno-konvektivnyh-protsessov-teplomassoperenosa-pri-dvizhenii-kapel-vody-cherez-vysokotemperaturnye (accessed: 12.05.2024). (rus).

12. Zhdanova A.O., Kuznetsov G.V., Strizhak P.A. Influence of water droplets distribution in the “water shell” on temperature in follow movement. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2013; 2:9-17. URL: https://cyberleninka.ru/article/n/vliyanie-raspredeleniya-kapel-vody-v-vodyanom-snaryade-na-temperaturu-v-ego-slede (accessed: 12.05.2024). (rus).

13. Rosenzweig A.K., Strashinsky Ch.S. Boiling of droplets of low-boiling of dispersed phase in mode of heterogeneous nucleation. Innovative Science. 2016; 11-2:56-60. URL: https://cyberleninka.ru/article/n/kipenie-kapel-nizkokipyaschey-dispersnoy-fazy-v-rezhime-geterogennoy-nukleatsii (accessed: 12.05.2024). (rus).

14. Khasanov R.M., Lishtakov A.A., Chistov Yu.S. Study of the intensity of thermal radiation depending on the fire source and the area of filling of highly flammable liquids and combustible substances. Bulletin of the Kazan Technological University. 2017; 16:110-112. URL: https://cyberleninka.ru/article/n/issledovanie-intensivnosti-teplovogo-izlucheniya-v-zavisimosti-ot-ochaga-pozhara-i-ploschadi-rozliva-legko-vosplamenyayuschihsya (accessed: 12.05.2024). (rus).

15. Dakhin S.V., Drozdov I.G., Shmatov D.P. K opredeleniyu relative velocity of a liquid drop in a gas flow. Bulletin of the Voronezh State Technical University. 2013; 5-1. URL: https://cyberleninka.ru/article/n/k-opredeleniyu-otnositelnoy-skorosti-kapli-zhidkosti-v-potoke-gaza (accessed: 12.05.2024). (rus).

16. Markus E.S., Snegirev A.Yu., Kuznetsov E.A., Tanklevsky L.T., Arakcheev A.V. Simulation of flame spread over discrete fire load. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2019; 4:29-41. URL: https://cyberleninka.ru/article/n/chislennoe-modelirovanie-rasprostraneniya-plameni-po-diskretnoy-sovokupnosti-goryuchih-materialov (accessed: 12.05.2024). (rus).

17. Borodai S.P., Letin A.N., Shedko S.V. Experimental studies of the structure of the flame and its impact on the enclosing ship structures. Transactions of the Krylov State Research Centre. 2020; 2(392):79-88. URL: https://cyberleninka.ru/article/n/eksperimentalnye-issledovaniya-struktury-plameni-i-ego-vozdeystviya-na-ograzhdayuschie-sudovye-konstruktsii (accessed: 12.05.2024). (rus).

18. Puzach S.V., Abakumov E.S. Definition of flame height zone in case of liquid diffusion combustion. Pozharovzryvobez­opasnost/Fire and Explosion Safety. 2012; 2:31-34. URL: https://cyberleninka.ru/article/n/k-opredeleniyu-vysoty-plamennoy-zony-pri-diffuzionnom-gorenii-zhidkosti-1 (accessed: 12.05.2024). (rus).

19. Daniel T., Joseph T., Frederick W. Fire dynamic of spill fires Spill Fires. 2000; 1-36.

20. Ogurtsov S.Yu., Semichevsky S.V. On the question of the need to substantiate the initial data for modeling the combustion processes of turbine oil. Naukoviy visnik: Tsivilny zahist ta pozhezhna bezpeka. 2016; 2:5. (ukr).

21. Kuznetsov G.V., Volkov R.S., Sviridenko A.S., Zhdanova A.O., Strizhak P.A. Containment and suppression of compartment fires using specialized liquid compositions. Fire Safety Journal. 2024; 147:104187. DOI: 10.1016/j.firesaf.2024.104187

22. Liu Y., Wang X., Liu T., Ma J., Li G., Zhao Z. Preliminary study on extinguishing shielded fire with water mist. Process Safety and Environmental Protection. 2020; 141:344-354. DOI: 10.1016/j.psep.2020.05.043

23. Yang S., Nie W., Lv S., Liu Z., Peng H., Ma X., Cai P., Xu C. Effects of spraying pressure and installation angle of nozzles on atomization characteristics of external spraying system at a fully-mechanized mining face. Powder Technology. 2019; 343:754-764. DOI: 10.1016/j.powtec.2018.11.042

24. Chvanov S.V., Kuznetsov G.V., Strizhak P.A., Volkov R.S. The necessary water discharge density to suppress fires in premises. Powder Technology. 2022; 408:117707. DOI: 10.1016/j.powtec.2022.117707.

25. Liu Y., Fu Z., Zheng G., Chen P. Study on the effect of mist flux on water mist fire extinguishing. Fire Safety Journal. 2022; 130:103601. DOI: 10.1016/j.firesaf.2022.103601.

26. Rohilla M., Saxena A., Dixit P.K., Mishra G., Narang R. Aerosol forming compositions for fire fighting applications : a review. Fire Technology. 2019; 55:2515-2545. DOI: 10.1007/s10694-019-00843-7.


Review

For citations:


Khalikov R.V., Roenko V.V., Begishev I.R., Khalikova T.N., Korolchenko A.D. Prospects of using an aqueous medium in a metastable phase state to prevent combustible gas fires. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2024;33(4):97-107. (In Russ.) https://doi.org/10.22227/0869-7493.2024.33.04.97-107

Views: 194


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)