Approximation formula for calculating fire resistance of unprotected steel structures
https://doi.org/10.22227/0869-7493.2024.33.03.57-66
Abstract
Introduction. When designing buildings it is necessary to estimate the actual fire resistance limits of unprotected steel structures. Nomograms are a convenient tool for obtaining such an assessment. Practical necessity of integration of “manual” technology and modern means of design automation makes the task of “digitization” of nomograms by creating computational data models urgent.
Goals and objectives. The purpose of the work was to obtain a rather simple formula for calculating the fire resistance limits of unprotected steel structures. The following tasks were solved: comparison of the literature data on fire resistance limits with the results of calculations according to the normative document on fire safety “VNPB 73–18”; calculation of a four-digit table of fire resistance limits for the subsequent approximation of functional dependence.
Research methods. The table of fire resistance values is calculated with four correct digits using the Adams multistep method of variable order. The formula for calculation of fire resistance limit of unprotected steel structures was obtained by successive approximation of tabular data first by one variable (thickness, i.e. reciprocal of the section factor) and then by another (critical temperature).
Results and discussion. Calculation according to the methodology VNPB 73–18 gives the fire resistance limits close to the reference values, which were published by A.I. Yakovlev in 1985. The values of convective and radiation heat transfer coefficients adopted in the VNPB 73–18 method correspond to the fire resistance tests according to GOST 30247.0–94 (ISO 834–75).
Conclusions. An approximation formula was obtained, the calculations according to which give the same fire resistance limits as the calculations according to the VNPB 73–18 method. Relative error of approximation does not exceed 0.5 % in the range of parameters change: critical temperature — from 500 to 700 °C; thickness — from 3 to 12 mm.
Keywords
About the Authors
Yu. K. MalikovRussian Federation
Yuri K. MALIKOV, Cand. Sci. (Eng.), Head of Research Center
Mira St., 19, Ekaterinburg, 620002
RISC AuthorID: 134294, Scopus: 6603995452
A. A. Titaev
Russian Federation
Aleksandr A. TITAEV, Cand. Sci (Eng.), Associate Professor
Mira St., 19, Ekaterinburg, 620002
RISC AuthorID: 546224, Scopus: 26649649000
V. O. Serebrennikov
Russian Federation
Vyacheslav O. SEREBRENNIKOV, Master’s Student
Mira St., 19, Ekaterinburg, 620002
References
1. Golovanov V.I., Pavlov V.V., Pekhotikov A.V., Pronin D.G. Standardization and the introduction of calculation methods for fire protection load-carrying steel structures. Actual problems of fire safety : XXXty problems of fire safetyods for fir. Moscow, VNIIPO, 2019; 26-29. (rus).
2. Golovanov V.I., Kryuchkov G.I. Steel structures fire resistance assessment under standardized fire temperature regimes. Fires and emergencies: prevention, liquidation. 2021; 3:52-60. DOI: 10.25257/FE.2021.3.52-60 (rus).
3. Bardin A.V. Fire load modeling on the structure in ANSYS. Construction of Unique Buildings and Structures. 2016; 6(45):55-67 (rus).
4. Minailov D.A. Investigation of fire resistance of steel structures covering a warehouse building under different temperature conditions. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2020; 29(3):54-65. (rus).
5. Simonova M.A., Romanov N.N., Permyakov A.A., Fedorov A.V., Korablev V.A., Volkov D.P. Method of engineering calculation of the fire resistance limit for load-bearing metal structures. Journal of International Academy of Refrigeration. 2021; 2:88-97. DOI: 10.17586/1606-4313-2021-20-2-88-97 (rus).
6. Shebeko Yu.N., Zuban A.V., Shebeko A.Yu. An evaluation of an actual fire resistance limit of non-protected steel structures for different temperature regimes of fires. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2019; 28(6):29-34. DOI: 10.18322/PVB.2019.28.06.29-34 (rus).
7. Gravit M.V., Dmitriev I.I. Fire resistance of light steel framing. Saint Petersburg, POLITEKHPRESS, 2020; 213. (rus).
8. Mosalkov I.L., Plusnina G.F., Frolov A.Yu. Fire resistance of building structures. Moscow, ZAO “Spectekhnika”, 2001; 496. (rus).
9. Yakovlev A.I. Calculation of fire resistance of building structures. Moscow, Stroyizdat Publ., 1988; 144. (rus).
10. Molchadskii I.S. Fire in the indoors. Moscow, VNIIPO, 2005; 456. (rus).
11. Nevskii A.S. Radiant heat transfer in furnaces and firebox. Moscow, Metallurgiya Publ., 1971:440. (rus).
12. Lisienko V.G., Volkov V.V., Malikov Y.K. Improved fuel efficiency and control of metal heating in reheat furnaces. Moscow, Metallurgiya Publ., 1988; 231. (rus).
13. Roitman V.M. Engineering solutions for assessing the fire resistance of designed and reconstructed buildings. Moscow, Association “Fire safety and science”, 2001; 382. (rus).
14. Nenakhov S.A., Pimenova V.P., Pimenov A.L. Problems of fire protection system. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2010; 19(12):19-26. (rus).
15. Wickstrom U. The adiabatic surface temperature and the plate thermometer. Fire Safety Science-Proceedings of the Tenth International Symposium : International Association for Fire Safety Science. 2011; 1001-1012. DOI: 10.3801/IAFFS.FSS.10-1001
16. Sultan M.A. Fire resistance furnace temperature measurements: plate thermometers vs shielded thermocouples. Fire Technology. 2006; 42(3):253-267. DOI: 10.1007/s10694-006-8431-7
17. Wickstrom U. The plate thermometer — a simple instrument for reaching harmonized f ire resistance tests. Fire Technology. 1994; 30(2):195-208. DOI: 10.1007/BF01040002
18. Cooke G.М. Can harmonization of fire resistance furnaces be achieved by plate thermometer control? Fire Safety Science-Proceedings of the Fourth International Symposium : International Association for Fire Safety Science. 1994; 1195-1207. DOI: 10.3801/IAFSS.FSS.4-1195
19. Wickstrom U. Temperature Calculation in Fire Safety Engineering : Springer International Publishing Switzerland. 2016; 250. DOI: 10.1007/978-3-319-30172-3
20. Elich J.J.P., Hamerlinck A.F. Thermal properties of galvanized steel and its importance in enclosure fire scenarios. Fire Safety Journal. 1990; 16:469-482.
21. Lee E.W.М. Application of artificial neural network to fire safety engineering. Handbook on Decision Making. 2010; 4:369-396. DOI: 10.1007/978-3-642-13639-9_15
22. Hanin B. Universal function approximation by deep neural nets with bounded width and ReLU activations. Mathematics. 2019; 7(10):1-9. DOI: 10.3390/math7100992
23. de Santana Gomes W.J. Structural reliability analysis using adaptive artificial neural networks. ASME. ASME J. Risk Uncertainty Part B. 2019; 5(4):1-8. DOI: 10.1115/1.4047636
24. Chaudhary R.K., Van Coile R., Gernay T. Potential of surrogate modelling for probabilistic fire analysis of structures. Fire Technology. 2021; 57(3):3151-3177. DOI: 10.1007/s10694-021-01126-w
25. Alverlandro Silva Ricardo, Wellison Jose de Santana Gomes. Structural reliability methods applied in analysis of steel elements subjected to fire. Journal of Engineering Mechanics. 2021; 147(12):4021-4029. DOI: 10.1061/(ASCE)EM.1943-7889.0002023
26. Moradi M.J., Kambiz D., Ghazi-nader D., Hajiloo H. The prediction of fire performance of concrete-filled steel tubes (CFST) using artificial neural network. Thin-Walled Structures. 2021; 161(2):1-17. DOI: 10.1016/j.tws.2021.107499
27. Kesawan S., Rachmadini R., Sabesan S., Janarthanan B. Application of neural networks for light gauge steel fire walls. Engineering Structures. 2023; 278:6-14. DOI: 10.1016/j.engstruct.2022.115445
28. Guliyev N.J., Ismailov V.E. Approximation capability of two hidden layer feedforward neural networks with fixed weights. Neurocomputing. 2018; 316:262-269.
29. Almira J.M., Lopez-de-Teruel P.E., Romero-L’opez D.J., Voigtlaender F. Negative results for approximation using single layer and multilayer feedforward neural networks. Journal of Mathematical Analysis and Applications. 2021; 494(1):1-10. DOI: 10.1016/j.jmaa.2020.124584
Review
For citations:
Malikov Yu.K., Titaev A.A., Serebrennikov V.O. Approximation formula for calculating fire resistance of unprotected steel structures. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2024;33(3):57-66. (In Russ.) https://doi.org/10.22227/0869-7493.2024.33.03.57-66