Maximum explosive particles size of iron air suspension
https://doi.org/10.22227/0869-7493.2024.33.03.5-10
Abstract
Introduction. The well-known results of experimental study of the minimum explosive concentration (MEC) polydisperse iron dust air suspension in a 1-m3 chamber (Clouthier, Taveau, Dastidar et al., 2019) and a 20-L chamber (Cashdollar, 1994) are considered. An analysis of these results at a qualitative level, carried out by the authors of these studies, showed that the maximum size of iron particles dcr responsible for the explosion hazard belongs to the range from 30 microns to 75 microns. The task is to clarify the dcr based on a quantitative analysis of the results of the study in a 1-m3 chamber by the known method (Poletaev, 2014).
Selection and processing of initial data. For two polydisperse iron specimens with different MEC in a 1-m3 chamber (MEC1 = 250 g/m3 for a fine specimen and MEC2 = 1,250 … 1,500 g/m3 for a coarse specimen), continuous particle size distribution functions are constructed: F1(d) and F2(d), respectively. Here, F(d) is the mass fraction specimen particles having size less than d.
Estimation of dcr and discussion of the result. Following the procedure of the quantitative dcr estimation method, the equation F1(dcr)/F2(dcr) = MEC2/MEC1 was solved in a visual graphical form. The result of the solution: dcr = 36 ± 3 microns. The obtained quantitative result significantly clarified the known qualitative assessment of the dcr.
Conclusions. The ability of polydisperse air suspension of iron dust to spread the flame (i.e. its explosiveness) is determined by the content of fine fraction “less than dcr”. The minimum amount of this fraction should exceed the value of about 150 g/m3.
About the Author
N. L. PoletaevRussian Federation
Nikolay L. POLETAEV, Dr. Sci. (Eng.), Leading Researcher
VNIIPO, 12, Balashikha, Moscow Region, 143903
RISC AuthorID: 1093620
References
1. Bergthorson J.M. Recyclable metal fuels for clean and compact zero-carbon power. Progress in Energy and Combustion Science. 2018; 68:169-196. DOI: 10.1016/j.pecs.2018.05.001
2. Bergthorson J.M., Goroshin S., Soo M.J., Julien P., Palecka J., Frost D.L. et al. Direct combustion of recyclable metal fuels for zero-carbon heat and power. Applied Energy. 2015; 160:368-382. DOI: 10.1016/j.apenergy.2015.09.037
3. Wiinikka H., Vikström T., Wennebro J., Toth P., Sepman A. Pulverized Sponge Iron, a Zero Carbon and Clean Substitute for Fossil Coal in Energy Applications. Energy & Fuels. 2018; 32(9). DOI: 10.1021/acs.energyfuels.8b02270
4. Tóth P., Ögren Y., Sepman A., Gren P., Wiinikka H. Combustion behavior of pulverized sponge iron as a recyclable electrofuel. Powder Technology. 2020; 373:210-219. DOI: 10.1016/j.powtec.2020.05.078
5. Sun J.-H., Dobashi R., Hirano T. Combustion behavior of iron particles suspended in air. Combustion Science and Technology. 2000; 150(1):99-114. DOI: 10.1080/00102200008952119
6. Ning D., Shoshin Y., van Oijen J.A., Finotello G., de Goey L.P. H. Burn time and combustion regime of laser-ignited single iron particle. Combust Flame. 2021; 230:111424. DOI: 10.1016/j.combustflame.2021.111424
7. Ning D., Shoshin Y., van Stiphout M., van Oijen J., Finotello G., de Goey P. Temperature and phase transitions of laser-ignited single iron particle. Combust Flame. 2022; 236:111801. DOI: 10.1016/j.combustflame.2021.111801
8. Tang F.-D., Goroshin S., Higgins A.J. Modes of particle combustion in iron dust flames. Proceedings of the Combustion Institute. 2011; 33(2):1975-1982. DOI: 10.1016/j.proci.2010.06.088
9. Cashdollar K.L. Flammability of metals and other elemental dust clouds. Process Safety Progress. 1994; 13(3):139-145. DOI: 10.1002/prs.680130306
10. Cashdollar K.L. Overview of dust explosibility characteristics. Journal of Loss Prevention in the Process Industries. 2000; 13(3-5):183-199. DOI: 10.1016/s0950-4230(99)00039-x
11. Going J.E., Chatrathi K., Cashdollar K.L. Flammability limit measurements for dusts in 20-l and 1-m3 vessels. Journal of Loss Prevention in the Process Industries. 2000; 13:209-219. DOI: 10.1016/S0950-4230(99)00043-1
12. Taveau J.R., Going J.E., Hochgreb S., Lemkowitz S.M., Roekaerts D.J.E.M. Igniter-induced hybrids in the 20-l sphere. Journal of Loss Prevention in the Process Industries. 2017; 49:348-356. DOI: 10.1016/j.jlp.2017.07.014
13. Danzi E., Pio G., Marmo L., Salzano E. The explosion of non-nano iron dust suspension in the 20-l spherical bomb. Journal of Loss Prevention in the Process Industries. 2021; 71:104447. DOI: 10.1016/j.jlp.2021.104447
14. Guo Y., Ren K., Wei A., Tao C., Huang W., Zhao P. et al. Iron dust explosion characteristics with small amount of nano-sized Fe2O3 and Fe3O4 particles. Manuscript FUEL. 2022; 124786. DOI: 10.1016/j.fuel.2022.124786
15. Scholl E.W., Reeh D., Wiemann W. et al. Brenn-und Explosions — Kenngrossen von Stauben. SFT-Report. 1979; 2.2:100. URL: http://staubex.ifa.dguv.de/explosuche.aspx
16. Clouthier M.P., Taveau J.R., Dastidar A.G., Morrison L.S., Zalosh R.G., Ripley R.C. et al. Iron and aluminum powder explosibility in 20-L and 1-m3 chambers. Journal of Loss Prevention in the Process Industries. 2019; 62:103927. DOI: 10.1016/j.jlp.2019.103927
17. Mi X., Fujinawa A., Bergthorson J.M. A quantitative analysis of the ignition characteristics of fine iron particles. Combust Flame. 2022; 240:112011. DOI: 10.1016/j.combustflame.2022.112011
18. Poletaev N.L. Experiment-calculated estimating of the maximum particle size of explosive monodisperse dust-air mixture. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2014; 23(9):15-26. DOI: 10.18322/PVB.2014.23.09.15-26 (rus).
19. Kalejaiye O., Amyotte P.R., Pegg M.J., Cashdollar K.L. Effectiveness of dust dispersion in the 20-L Siwek chamber. Journal of Loss Prevention in the Process Industries. 2010; 23(1):46-59. DOI: 10.1016/j.jlp.2009.05.008
20. Altwal J.M., Véchot L.N. Experimental study of the influence of particle size on Minimum Explosible Concentration of sulfur dust. Journal of Loss Prevention in the Process Industries. 2021; 71:104507. DOI: 10.1016/j.jlp.2021.104507
21. Proust Ch., Accorsi A., Dupont L. Measuring the violence of dust explosions with the “209-l sphere” and with the standard “ISO 1 m3 vessel”. Systematic comparison and analysis of the discrepancies. Journal of Loss Prevention in the Process Industries. 2007; 20:599-606. DOI: 10.1016/j.jlp.2007.04.032
22. Poletaev N.L. On the problem of experimental justification of low explosibility for dust/air mixture in the 20-l chamber. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2017; 26(6):5-20. DOI: 10.18322/PVB.2017.26.06.5-20 (rus).
Review
For citations:
Poletaev N.L. Maximum explosive particles size of iron air suspension. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2024;33(3):5-10. (In Russ.) https://doi.org/10.22227/0869-7493.2024.33.03.5-10