Influence of PVC compound composition on the performance properties and flame retardant efficiency of polymer materials
https://doi.org/10.22227/0869-7493.2023.32.05.26-39
Abstract
Introduction. In the last few years, plasticized PVC filled with intumescent materials was used as a passive fire protection component. Important characteristics of such materials are physical and mechanical properties, degree and temperature profile of foaming and flammability. These characteristics significantly depend on the properties of the polymer matrix of the intumescent material. In this paper, the relationship between the composition of PVC compound and the properties of flame-retardant materials based on it is investigated.
Materials and methods of research. Intumescent flame-retardant materials based on PVC compound of different compositions were used in this paper: with changes in the molecular weight of PVC and plasticizer content in the composition of the PVC compound. The PVC compound was obtained by intensive mixing of PVC powder with a plasticizer and a complex stabilizer. The flame retardant material was obtained by dry mixing powders of PVC compound, elastomeric component, flame retardant and intumescent material, followed by extrusion of the mixture through a flat slot die. A set of properties was determined for the obtained materials: density, hardness, tensile strength and elongation, heat resistance, degree of foaming in the range of 300–800 °C, flammability, fracture surface morphology, melt flow index.
Results and their discussion. The paper presents the results of the study of physical, mechanical and thermal properties of the flame retardant materials and their flame retardant effectiveness. It was found that tensile strength when introducing fillers into polymer material decreases by 20–62 %, which is typical for fillers with low adhesion to the polymer. At the same time, hardness increases up to 32 %. The viscosity of the polymer matrix at the base of the flame retardant material determines the process of its foaming.
Conclusions. For the flame retardant materials based on PVC compound, the following is observed:
1) reduction of physical and mechanical properties relative to the polymer material;
2) the presence of oxidized graphite in the composition of the flame retardant material determines the decrease in the thermal resistance of the polymer matrix when producing fire-retardant materials;
3) viscosity of polymer base in the composition of the flame retardant material is an indicator that determines the change in heat resistance and degree of foaming.
Keywords
About the Authors
A. A. GaliguzovRussian Federation
Andrey A. GALIGUZOV, Low Researcher, Division of Chemical Technology and New Materials; Researcher
Leninskie Gory, 1/11, Moscow, 119234;
Zavodskaya St., 2, mkr. Klimovsk, Podolsk, Moscow Region, 142181
A. A. Serdan (jr.)
Russian Federation
Angel A. SERDAN (jr.), Cand. Sci. (Chem.), Researcher, Division of Chemical Technology and New Materials, Chemistry Department
Leninskie Gory, 1/11, Moscow, 119234
N. V. Yashin
Russian Federation
Nikolay V. YASHIN, Dr. Sci. (Chem.), Senior Researcher, Division of Chemical Technology and New Materials, Chemistry Department
Leninskie Gory, 1/11, Moscow, 119234
V. V. Avdeev
Russian Federation
Viktor V. AVDEEV, Dr. Sci. (Chem.), Professor, Head of Division of Chemical Technology and New Materials, Chemistry Department
Leninskie Gory, 1/11, Moscow, 119234
References
1. Qu H., Wu W., Xie J., Xu J. A novel intumescent flame retardant and smoke suppression system for flexible PVC. Polymers for Advanced Technologies. 2011; 22:1174-1181. DOI: 10.1002/pat.1934
2. Focke W.W., Muiambo H., Mhike W., Kruger H.J., Ofosu K. Flexible PVC flame retarded with expandable graphite. Polymer Degradation and Stability. 2014; 100:63-69. DOI: 10.1016/j.polymdegradstab.2013.12.024
3. Coaker A.W. Fire and flame retardants for PVC. Journal of Vinyl and Additive Technology. 2003; 9(3):108-115. DOI: 10.1002/vnl.10072
4. Lagreve C., Ferry L., Lopez-Cuesta J.-M. Flame Retardant Polymer Materials Design for Wire and Cable Applications. In Flame Retardant Polymeric Materials : a Handbook. Edited by Y. Hu, X. Wang. Boca Raton, Taylor and Francis Group. 2020; 294. DOI: 10.1201/b22345-14
5. Khalturinskiy N.A., Novikov D.D., Zhorina L.A., Kompanietz L.V., Rudakova T.A. The Effect of the Intumescent F.R. on the Flammability of PVC Plasticates. Chemical Physics and Mesoscopy. 2009; 11(1):22-27. (rus).
6. Fialkov A.S. Carbon, interlayer compounds and composites based on it. Moscow, Aspect Press. 1997; 365 (rus).
7. Kropachev R.V., Novokshonov V.V., Wolfson S.I., Mikhailova S.N. Thermal-expandable polymer composite materials. Herald of technological university. 2015; 18(5):60-63 (rus).
8. Nobuatsu W., Satoshi K., Hiroki I. Thermal Decomposition of Graphite Fluoride. I. Decomposition Products of Graphite Fluoride, (CF)n in a Vacuum. Bulletin of the Chemical Society of Japan. 1980; 53(10):2731-2734. DOI: 10.1246/bcsj.53.2731
9. Saidaminov M.I. Thermolysis of graphite intercalated with nitric acid in various gas environments : PhD thesis in chemistry. Moscow, 2013; 10-48 (rus).
10. Sorokina N.E. Intercalated graphite compounds with acids: synthesis, properties, application : Doctor thesis in chemistry. Moscow, 2007; 182-190 (rus).
11. Chung D.D.L. Exfoliation of graphite. Journal of Materials Science. 1987; 22:4190-4198. DOI: 10.1007/BF01132008
12. Camino G., Duquesne S., Delobel R., Eling B., Lindsay C., Roels T. Mechanism of Expandable Graphite Fire Retardant Action in Polyurethanes. ACS Symposium Series. 2001; 797:90-109. DOI: 10.1021/bk-2001-0797.ch008
13. Markov A.V., Tahseen A. Saki, Tokareva E.V. The effect of the decomposition of porophore azodicarbonamide on the foaming process of polymer compositions. Plasticheskie massy. 2020; 9-10:35-39. DOI: 10.35164/0554-2901-2020-9-10-35-39 (rus).
14. Markov A.V., Tahseen A. Saki. The Influence of Technological Additives on the Foaming Process of Rigid Polyvinylchloride Compositions with Azodicarbonamide. Fine Chemical Technologies. 2014; 9(3):79-85 (rus).
15. Markov A.V., Tahseen A. Saki, Uglicheva A.Yu. Features of foaming rigid polyvinyl chloride compositions with azodicarbonamide. Fine Chemical Technologies. 2013; 8(6):99-102 (rus).
16. Wypych G. PVC. Degradation and Stabilization. Toronto, ChemTec Publishing, 2020; 8, 258, 345-355. DOI: 10.1016/C2019-0-00335-4
17. Ushkov V.A., Lalayan V.M., Nevzorov D.I., Lomakin S.M. The Effect of Phthalate and Phosphorus Plasticizer for Flammability and Smoke-Forming Ability of Polymer Composite Materials. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2013; 22(10):25-33. eLIBRARY ID: 20405994 (rus).
18. Ushkov V.A., Lalayan V.M., Lomakin S.M., Nevzorov D.I. Flammability and smoke generation ability of polymer composite materials with degradable mineral fillers. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2013; 22(8):15-24. eLIBRARY ID: 20349093 (rus).
19. Griffin G., Bicknell A.D., Brown T.J. Studies on the Effect of Atmospheric Oxygen Content on the Thermal Resistance of Intumescent, Fire-Retardant Coatings. Journal of Fire Sciences. 2005; 23(4):303-328. DOI: 10.1177/0734904105048598
20. Cornwall K.R. Coupling assembly with intumescent material. US Patent, No. US 6470635 B2, publ. date 29.10.2002.
21. Xing F., Harle M., Didone B. Composition for molded fire stop. Canadian Patent, No. CA 2351262 A1, publ. date 22.12.2002.
22. Zhvanetskiy I., Page J.B., Bernt K. Firestop composition comprising thermoplastic, intumescent, and flame retardants. EU Patent, No. EP 2397514 A2, publ. date 21.12.2011.
23. Truss J.W.G. Fire collar. US Patent, No. US 7676991 B2, publ. date 16.03.2016.
24. Hulteen J.C., Frost G.W., Haffner R.J., Schmidt E.L. Intumescent Firestop Tape Construction. US Patent, No. US 20200056073 A1, publ. date 20.02.2020.
25. Boot P.L. Intumescent strip. EU Patent, No. EP 0745751 A2, publ. date 08.09.1999.
26. Horacek H. Intumescent fire-protection strips jacketed on three sides and combined cold-and hot-gas seals. US Patent, No. US 20030035912 A1, publ. date 04.05.2004.
27. Stalker I.G. Seal for mounting to door frame. EU Patent, No. EP 2378048 A1, publ. date 19.10.2011.
28. Horacek H.Dr. Intumescent sealing and cover sections. EU Patent, No. EP 0879870 B1, publ. date 29.08.2001.
29. Wypych G. Introduction in : handbook of Plasticizers. 3rd Edition. Edited by G. Wypych. Toronto, ChemTec Publishing. 2017; 1-6. DOI: 10.1016/B978-1-895198-97-3.50003-2
30. Guzeev V.V. Structure and properties of filled PVC. Saint Petersburg, Scientific foundations and technologies, 2012; 95-130 (rus).
31. Krauskopf L.G., Godvin A. Plasticizers Chapter 5. PVC (Polyvinyl chloride). Preparation, additives and fillers, copolymers, properties, processing. Edited by J. Summers, C. Wilkie, C. Daniels. Saint Petersburg, Profession, 2007; 218-220 (rus).
32. Gutkovich S.A. Features of the production and use of polyvinyl chloride with various physical and chemical characteristics : Doctor thesis of Technical Sciences. Мoscow, 2011; 181-203 (rus).
33. Bocchini S., Camino G. Halogen-containing flame retardants. Chapter 4 in: Fire Retardancy of Polymeric Materials. Edited by C.A. Wilkie, A.B. Morgan 2nd ed. Boca Raton, FL, CRC Press, 2010; 75-105. DOI: 10.1201/9781420084009-c4
34. Carty P., White S. The effect of DOP plasticizer on smoke formation in poly(vinyl chloride). Polymer. 1992; 33(5):1110-1111. DOI: 10.1016/0032-3861(92)90033-S
35. Murphy J. Additives for Plastics Handbook. Second Edition. Oxford, Elsevier, 2001; 115-140. DOI: 10.1016/B978-1-85617-370-4.X5000-3
36. Muir K., Liggat J.J., O’Keeffe L. Thermal volatilisation analysis of graphite intercalation compound fire retardants. Journal of Thermal Analysis and Calorimetry. 2023; 148:1905-1920. DOI: 10.1007/s10973-022-11804-8
37. Arkhangelsky I.V., Godunov I.A., Yashin N.V., Naganovskii Y.K., Shornikova O.N. The kinetics of intumescent flame retardant foaming. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2020; 29(5):71-81. DOI: 10.22227/PVB.2020.29.05.71-81 (rus).
38. Camino G., Lomakin S. Intumescent materials. Chapter 10 in: Fire Retardant Materials. Edited by A.R. Horrocks, D. Price. Cambridge, Woodhead Publishing, 2001; 318-336. DOI: 10.1533/9781855737464.318
39. Lavrov N.A., Collart K., Ksenofontov V.G., Lavrova T.V., Belukhichev E.V. About the mechanism of destruction of polyvinyl chloride. Bulletin of the Saint Petersburg State Institute of Technology. 2012; 16(42):031-035. eLIBRARY ID: 18322320 (rus).
40. Luangtriratana P., Kandola B.K., Duquesne S., Bourbigot S. Quantification of Thermal Barrier Efficiency of Intumescent Coatings on Glass Fibre-Reinforced Epoxy Composites. Coatings. 2018; 8(347):1-18. DOI: 10.3390/coatings8100347
41. Okyay G., Naik A.D., Samyn F., Jimenez M., Bourbigot S. Fractal conceptualization of intumescent fire barriers, toward simulations of virtual morphologies. Scientific Reports. 2019; 9(1872):1-16. DOI: 10.1038/s41598-019-38515-9
Review
For citations:
Galiguzov A.A., Serdan (jr.) A.A., Yashin N.V., Avdeev V.V. Influence of PVC compound composition on the performance properties and flame retardant efficiency of polymer materials. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2023;32(5):26-39. (In Russ.) https://doi.org/10.22227/0869-7493.2023.32.05.26-39