Methodology for experimental investigation of gas jet fire suppression using automatic gas-powder fire extinguishing systems
https://doi.org/10.22227/0869-7493.2023.32.04.77-85
Abstract
Introduction. Currently, the design and construction of liquefied natural gas (LNG) facilities are actively taking place in the Russian Federation. Accidents at these facilities typically start with equipment leaks, followed by the release and subsequent ignition of flammable substances. The impact of such fire hazards can lead to the destruction of adjacent equipment and cascading accidents. Existing literature on LNG fire suppression mainly focuses on extinguishing or containing LNG spills. However, there is limited research on fire suppression of pressurized combustible gases.
This publication aims are to develop a methodology for conducting fire tests on gas jet fire suppression.
The tasks include reviewing the results of previous experiments on jet releases of LNG, analyzing the frequency of leaks and their most probable diameter, determining the parameters of the model fire source, defining the parameters of the test setup, and outlining the procedure for conducting fire tests.
Analytical part. The methodology is developed based on the analysis of statistical data on accidents in the petrochemical industry. Parameters of the test setup for conducting LNG jet fire suppression tests are determined using data on the frequency of equipment leaks and the most probable equivalent diameter of the accidental openings.
Conclusions. A review of previous experiments on LNG jet releases and an analysis of leak frequencies and their most probable diameters have been conducted. Based on this analysis, parameters for the test setup and a procedure for conducting fire tests have been proposed. A methodology for conducting fire tests on gas jet fire suppression to determine the fire extinguishing effectiveness of fire suppression modules has been developed.
About the Authors
D. A. KorolchenkoRussian Federation
Dmitriy A. KOROLCHENKO, Dr. Sci. (Eng.), Docent, Head of Institute of Complex Safety in Construction
Yaroslavskoe Shosse, 26, Moscow, 129337, Russian Federation
ID RISC: 352067; Scopus AuthorID: 55946060600; ResearcherID: E-1862-2017
V. I. Seliverstov
Russian Federation
Vladimir I. SELIVERSTOV, Cand. Sci. (Eng.), General Designer
Skobyanoe Highway, 3, Moscow Region, Sergiev Posad, 141300
ID RISC: 975258; ResearcherID: IUP-8784-2023
A. B. Saenkova
Russian Federation
Alexandra B. SAENKOVA, Deputy General Designer
Skobyanoe Highway, 3, Moscow Region, Sergiev Posad, 141300
ID RISC: 1108799; ResearcherID: IUP-7179-2023
References
1. Raj P.K. LNG fires: A review of experimental results, models and hazard prediction challenges. Journal of Hazardous Materials. 2007; 140(3):444-464. DOI: 10.1016/j.jhazmat.2006.10.029
2. Cleaver P., Johnson M., Ho B. A summary of some experimental data on LNG safety. Journal of Hazardous Materials. 2007; 140(3):429-438. DOI: 10.1016/j.jhazmat.2006.10.047
3. Suardin J.A., Wang Y., Willson M., Mannan M. Field experiments on high expansion (HEX) foam application for controlling LNG pool fire. Journal of Hazardous Materials. 2009; 165(1-3):612-622. DOI: 10.1016/j.jhazmat.2008.10.040
4. Yun G., Ng D., Mannan M.S. Key findings of liquefied natural gas pool fire outdoor tests with expansion foam application. Industrial & Engineering Chemistry Research. 2011; 50(4):2359-2372. DOI: 10.1021/ie101365a
5. Yun G., Ng D., Mannan M.S. Key observations of liquefied natural gas vapor dispersion field test with expansion foam application. Industrial & Engineering Chemistry Research. 2011; 50(3):1504-1514. DOI: 10.1021/ie100822h
6. Zhang Z., Krishnan P., Jiao Z., Mannan M., Wang Q. Developing a CFD heat transfer model for applying high expansion foam in an LNG spill. Journal of Loss Prevention in the Process Industries. 2021; 71:104456. DOI: 10.1016/j.jlp.2021.104456
7. Yang J., Li Y., Zhu J., Han H. Quantitative study of the factors of LNG liquid foam stability: Operating parameters and collection containers and time. Process Safety and Environmental Protection. 2018; 117:223-231. DOI: 10.1016/j.psep.2018.05.005
8. Luketa-Hanlin A. A review of large-scale LNG spills: experiments and modeling. Journal of Hazardous Materials. 2006; 132(2):119-140. DOI: 10.1016/j.jhazmat.2005.10.008
9. Zhang Q., Liang D., Wen J. Experimental study of flashing LNG jet fires following horizontal releases. Journal of Loss Prevention in the Process Industries. 2019; 57:245-253. DOI: 10.1016/j.jlp.2018.12.007
10. Koopman R.P., Ermak D.L. Lessons learned from LNG safety research. Journal of Hazardous Materials. 2007; 140(3):412-428. DOI: 10.1016/j.jhazmat.2006.10.042
11. Lu H., Delichatsios M.A., Li X., Liu S., Lv J., Hu L. Flame geometrical characteristics of downward sloping buoyant turbulent jet fires. Fuel. 2019; 257:116112. DOI: 10.1016/j.proci.2020.06.227
12. Hu L., Wang Q., Delichatsios M.A., Tang F., Zhang X., Lu S. Flame height and lift-off of turbulent buoyant jet diffusion flames in a reduced pressure atmosphere. Fuel. 2013; 109:234-240. DOI: 10.1016/j.fuel.2012.12.050
13. Zhang X., Hu L., Zhang X., Tang F., Jiang Y., Lin Y. Flame projection distance of horizontally oriented buoyant turbulent rectangular jet fires. Combustion and Flame. 2017; 176:370-376. DOI: 10.1016/j.combustflame.2016.10.016
14. Bradley D., Gaskell P.H., Gu X., Palacios A. Jet flame heights, lift-off distances, and mean flame surface density for extensive ranges of fuels and flow rates. Combustion and Flame. 2016; 164:400-409. DOI: 10.1016/j.combustflame.2015.09.009
15. Lowesmith B.J., Hankinson G. Large scale high pressure jet fires involving natural gas and natural gas/hydrogen mixtures. Process Safety and Environmental Protection. 2012; 90(2):108-120. DOI: 10.1016/j.psep.2011.08.009
16. Gopalaswami N., Liu Y., Laboureur D.M., Zhang B., Mannan M.S. Experimental study on propane jet fire hazards: Comparison of main geometrical features with empirical models. Journal of Loss Prevention in the Process Industries. 2016; 41:365-375. DOI: 10.1016/j.jlp.2016.02.003
17. Laboureur D.M., Gopalaswami N., Zhang B., Liu Y., Mannan M.S. Experimental study on propane jet fire hazards: Assessment of the main geometrical features of horizontal jet flames. Journal of Loss Prevention in the Process Industries. 2016; 41:355-364. DOI: 10.1016/j.jlp.2016.02.013
18. Palacios A., Rengel B. Flame shapes and thermal flux of vertical hydrocarbon flames. Fuel. 2020; 276:118046. DOI: 10.1016/j.fuel.2020.118046
19. Palacios A., García W., Rengel B. Flame shapes and thermal fluxes for an extensive range of horizontal jet flames. Fuel. 2020; 279:118328. DOI: 10.1016/j.fuel.2020.118328
20. Gómez-Mares M., Luis Z., Joaquim C. Jet fires and the domino effect. Fire Safety Journal. 2008; 43(8):583-588.
21. Casal J., Gómez-Mares M., Messineo M.A.M., Muñoz Messineo M.A. Jet fires: a “minor” fire hazard? Chemical Engineering Transactions. 2012; 26:13-20. DOI: 10.3303/CET1226003
22. Zwęgliński T. Conventional event tree analysis on emergency release of liquefied natural gas: 5. International Journal of Environmental Research and Public Health. Multidisciplinary Digital Publishing Institute, 2022; 19(5):2961. DOI: 10.3390/ijerph19052961
23. Selvan R.T., Siddqui N.A. Risk assessment of natural gas gathering station & pipeline network. International Journal of Theoretical and Applied Mechanics. 2017; 12(2):227-242.
24. Fitzgerald G.A. Calculating facility siting study leak sizes-one size does not fit all. Process Safety Progress. 2016; 35(2):176-178. DOI: 10.1002/prs.11764
25. Stenkovoy V.I., Seliverstov V.I., Molchadskiy I.S., Baratov A.N. Gas-powder fire extinguishing of oil products in the tanks. Fire safety. 2011; 1:100-106. URL: https://www.elibrary.ru/item.asp?id=15608220 (rus).
Review
For citations:
Korolchenko D.A., Seliverstov V.I., Saenkova A.B. Methodology for experimental investigation of gas jet fire suppression using automatic gas-powder fire extinguishing systems. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2023;32(4):77-85. (In Russ.) https://doi.org/10.22227/0869-7493.2023.32.04.77-85