Preview

Behavior of liquefied natural gas tanks in a point of fire origin

https://doi.org/10.22227/0869-7493.2023.32.04.31-41

Abstract

Introduction. The paper substantiates the importance of investigations of LNG tanks behaviour during fires. The most dangerous mode of their destruction (BLEVE, boiling liquid expanding vapour explosion), is mentioned. The relevance of the article is conditioned by the need to analyze the BLEVE phenomenon to prevent it and to miti­gate its consequences. The purpose of the paper is to present fundamentals of this phenomenon and to analyze advanced relevant research findings, including the analysis of recent accidents. The main focus is on liquefied natural gas.

General regularities of BLEVE. The BLEVE phenomenon was analyzed using pV and pT diagrams (p is pressure, V is volume, and T is temperature). Liquid boils at critical overheat temperature in the mode of homogeneous nucleation followed by BLEVE. Experimental data on critical overheat temperatures are presented for some liquefied gases and flammable liquids.

Brief analysis of BLEVE accidents involving LNG tanks. Major BLEVE accidents, involving LNG tanks, are considered. These events occurred in Tivissa (Spain, 2002), Zarzalico (Spain, 2011), and Shansi (China, 2019), and each involved road tanks for LNG transportation. Dimensions of hazardous thermal radiation zones, that emerged as a consequence of fireballs, blast waves and vessel fragments, reached 100–200 m.

Experimental and theoretical investigations of BLEVE and fireballs that emerged at LNG tanks. The most interesting experimental studies in this area are analyzed. Hazardous factors (the fireball diameter, time frame, height of elevation, and thermal radiation intensity) were determined using a 5 m3 tank. The empirical correlation, connecting the above mentioned parameters with the LNG mass in the tank, were obtained. Large-scale experiments were carried out to determine characteristics of fireballs that emerged when LNG was flowing out of the pipeline and when the resulting oversaturated cloud was on fire.

Conclusions. The main patterns of BLEVE and fireball accidents, involving LNG tanks, were analyzed. Their patterns are similar to those typical for LPG tanks. However, the surface radiation from LNG tank fireballs (nearly 500 kW/m2) is much higher than the surface radiation from LPG tanks (nearly 350 kW/m2).

About the Author

Yu. N. Shebeko
All-Russian Research Institute for Fire Protection of Ministry of Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters
Russian Federation

Yury N. SHEBEKO, Dr. Sci. (Eng.), Professor, Chief Resear­cher

VNIIPO, 12, Balashikha, Moscow Region, 143903

ID RISC: 47042; Scopus AuthorID: 7006511704



References

1. Marshall V.C. Major chemical hazards. New York, Ellis Horwood Limited, 1987; 671.

2. Baker W.E., Cox P.A., Westline P.S., Kulesz J.J., Strelow R.A. Explosion hazards and evaluation. Amsterdam, Elsevior Scientific Publishing Company, 1983; 1, 2.

3. Shevchuck A.P., Simonov O.A., Shebeko Yu.N., Fakhrislamov R.Z. The regularities of accidents on LPG tanks with a fireballs occurrence. Chemical Industry. 1991; 6:338-340. (rus).

4. Planas-Cuchi E., Gassula N., Ventosa A., Casal J. Explosion of a road tanker containing liquefied natural gas. Journal of Loss Prevention in the Process Industries. 2004; 17:315-321. DOI: 10.1016/j.jlp.2004.05.005

5. Planas E., Pastor E., Casal J., Bonilla J.M. Analysis of the boiling liquid expanding vapor explosion (BLEVE) of a liquefied natural gas road tanker: The Zarzalico accident. Journal of Loss Prevention in the Process Industries. 2015; 34:127-138. DOI: 10.1016/j.jlp.2015.01.026

6. Wang K., Quin X., He Y., Shi T., Zhang X. Failure analysis integrated with prediction model for LNG transport trailer and thermal hazards induced by an accidental VCE: A case study. Engineering Failure Analysis. 2020; 108:104350.

7. McDevitt C.A., Chan C.K., Steward F.R., Tennankore K.N. Initiation step of boiling liquid expanding vapor explosions. Journal of Hazardous Materials. 1990; 25(1-3):169-180.

8. Abbasi T., Abbasi S.A. The boiling liquid expanding vapor explosion (BLEVE): Mechanism, consequences assessment, management. Journal of Hazardous Materials. 2007; 141(3):489-519. DOI: 10.1016/j.jhazmat.2006.09.056

9. Shebeko Yu.N. The criteria of possibility of BLEVE occurrence. Chemical Industry. 1994; 5:302-305. (rus).

10. Frost D.L. Dynamics of explosive boiling of a droplet. Physics of Fluids. 1988; 31(9):2554-2561. DOI: 10.1063/1.866608

11. Frost D., Sturtevant B. Effects of ambient pressure on the instability of a liquid boiling explosively at the superheat limit. Journal of Heat Transfer. 1986; 108(2):418-424.

12. Shepherd J.E., Sturtevant B. Rapid evaporation at the superheat limit. Journal of Fluid Mechanics. 1982; 121:379-402.

13. Shebeko Yu.N., Shebeko A.Yu. On the mechanism of a BLEVE occurrence due to fire engulfment of tanks with overheated liquids. Journal of Loss Prevention in the Process Industries. 2015; 36:167-170. DOI: 10.1016/j.jlp.2015.06.006

14. Jingde Li, Hong Hao. Numerical simulation of medium to large scale bleve and the prediction of BLEVE’s blast wave in obstructed environment. Process Safety and Environmental Protection. 2021; 145:94-109.

15. Li Q., Wang Y., Li L., Hao H., Wang R., Li J. Prediction of BLEVE loads on structures using machine learning and CFD. Process Safety and Environmental Protection. 2023; 171:914-925.

16. Birk A.M., Eyssette R., Heymes F. Early moments of Bleve: From vessel opening to liquid flashing release. Process Safety and Environmental Protection. 2019; 132:35-46. DOI: 10.1016/j.psep.2019.09.028

17. Hemmatian B., Casal J., Planas E. A new procedure to estimate BLEVE overpressure. Process Safety and Environmental Protection. 2017; 111:320-325. DOI: 10.1016/j.psep.2017.07.016

18. Hemmatian B., Planas E., Casal J. Comparative analysis of BLEVE mechanical energy and overpressure modelling. Process Safety and Environmental Protection. 2017; 106(3):138-149. DOI: 10.1016/j.psep.2017.01.007

19. Ustolin F., Tolias I.C., Giannissi S.G., Venetsanos A.G., Paltrinieri N. A CFD analysis of liquefied gas vessel explosions. Process Safety and Environmental Protection. 2022; 159:61-75. DOI: 10.1016/j.psep.2021.12.048

20. Bariha N., Mishra I.M., Srivastava V.C. Fire and explosion hazard analysis during surface transport of liquefied petro­leum gas (LPG): A case study of LPG truck tanker accident in Kannur, Kerala, India. Journal of Loss Prevention in the Process Industries. 2016; 40:449-460. DOI: 10.1016/j.jlp.2016.01.020

21. Kohout A., Jain P., Dick W. Review, identification and analysis of local impact of projectile hazard in the LNG industry: A LNG storage tanks case study. Journal of Loss Prevention in the Process Industries. 2019; 57:304-319. DOI: 10.1016/j.jlp.2018.07.018

22. Hemmatian B., Casal J., Planas E., Rashtchian D. BLEVE: The case of water and a historical survey. Journal of Loss Prevention in the Process Industries. 2019; 57:231-238. DOI: 10.1016/j.jlp.2018.12.001

23. Wang Y., Gu X., Xia L., Pan Y., Ni Y., Wang S., Zhou W. Hazard analysis on LPG fireball of road tanker BLEVE based on CFD simulation. Journal of Loss Prevention in the Process Industries. 2020; 68(3):104919. DOI: 10.1016/j.jlp.2020.104319

24. Birk A.M., Eyssette R., Heymes F. Analysis of BLEVE overpressure using spherical shock theory. Process Safety and Environmental Protection. 2020; 134:108-120. DOI: 10.1016/j.psep.2019.11.023

25. Zhang Q.-X., Liang D. Thermal radiation hazards from releases of LPG from pressurised storage. Procedia Engineering. 2013; 52:602-606. DOI: 10.1016/j.proeng.2013.02.192

26. Methods for the calculation of physical effects (“Yellow Book”). CPR 14E (parts 1 and 2). The Hague, Committee for the Prevention of Disasters. 3rd Ed. 1997.

27. Betteridge S., Phillips L. Large scale pressurized LNG BLEVE experiments. Symposium series no.160. Hazards 25. Shell, 2015.

28. Roberts A.F. Thermal radiation hazards from released LPG from pressurized storage. Fire Safety Journal. 1982; 4:197-212. DOI: 10.1016/0379-7112(81)90018-7

29. Hasegava K., Saito K. Study on the fireball following steam of n-pentane. Proceedings of the Second International Symposium on Loss Prevention and Safety Promotion in the Process Industries. Heidelberg, 1977; 297-304.

30. Roberts A.F. The effect of conditions prior to loss of containment of fireball behavior. International Chemical Engineering Symposium. Series. No. 71. Oxford, Pergamon Press, 1982.

31. Birk A.M., Andersson R.J., Coppens A.J. A computer simulation of a derailment accident: Part I — Model basis. Journal of Hazardous Materials. 1990; 25(1-2):121-147.

32. Wang K., Lui Z., Qian X., Huang P. Long-term consequence and vulnerability assessment of thermal radiation hazard from LNG explosive fireball in open space based on full-scale experiment and PHAST. Journal of Loss Prevention in the Process Industries. 2017; 46:13-22. DOI: 10.1016/j.jlp.2017.01.001

33. Wang K., He Y., Lui Z., Qian X. Experimental study on optimization models for evaluation of fireball characteristics and thermal hazards induced by LNG vapor cloud explosions based on colorimetric thermometry. Journal of Hazardous Materials. 2019; 366:282-292. DOI: 10.1016/j.jhazmat.2018.10.087

34. Raj P.K. LNG fires: A review of experimental results, models and hazard prediction challenges. Journal of Hazardous Materials. 2007; 140(3):444-464. DOI: 10.1016/j.jhazmat.2006.10.029

35. Zalosh R. Blast waves and fireballs generated by hydrogen fuel tank rupture during fire exposure. Proceedings of the 5th International Seminar on Fire and Explosion Hazards. Edinburgh, 2008; 149-158.

36. Cirrone D., Makarov D., Molkov V. Rethinking “BLEVE explosion” after liquid hydrogen storage tank rupture in a fire. International Journal of Hydrogen Energy. 2023; 48(23):8716-8730. DOI: 10.1016/j.ijhydene.2022.09.114

37. Hansen O.R. Liquid hydrogen releases show dense gas behavior. International Journal of Hydrogen Energy. 2020; 45:1343-1358. DOI: 10.1016/j.ijhydene.2019.09.060

38. Ustolin F., Paltrinieri N., Landucci G. An innovative and comprehensive approach for the consequence analysis of liquid hydrogen vessel explosions. Journal of Loss Prevention in the Process Industries. 2020; 68:104323. DOI: 10.1016/j.jlp.2020.104323

39. Pehr K. Aspects of safety and acceptance of LH2 tank systems in passenger cars. International Journal of Hydrogen Energy. 1996; 21(5):387-395. DOI: 10.1016/0360-3199(95)00092-5

40. Wingerden K., Kluge M., Habib A.K., Ustolin F., Paltriniery N. Medium-scale tests to investigate the possibility and effects of BLEVEs of storage vessels containing liquefied hydrogen. Chemical Engineering Transactions. 2022; 90:547-552. DOI: 10.3303/CET2290092


Review

For citations:


Shebeko Yu.N. Behavior of liquefied natural gas tanks in a point of fire origin. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2023;32(4):31-41. (In Russ.) https://doi.org/10.22227/0869-7493.2023.32.04.31-41

Views: 370


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)