Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search

Influence of phosphorus-containing flame retardants on fire hazard indices of gas-filled polymers based on reactive oligomers

https://doi.org/10.22227/0869-7493.2023.32.03.41-53

Abstract

Introduction. The reduction of flammability of gas-filled polymers prone to carbonization is based on the use of phosphorus- and boron-containing compounds that reduce the formation of combustible volatile pyrolysis products and increase the yield of coke residue. This reduces the rate of heat release, heat and mass transfer between the material and the flame. In the scientific literature the data about the influence of phosphorus-containing flame retardants on thermal stability, combustibility and smokeability of foams are given, but there are no data about the influence of phosphorus concentration on fire danger indicators of foams.

The aim of this paper is the development of effective methods of production of casting foams based on reactive oligomers with low fire hazard and high-performance. Objectives: to reveal the influence of phosphorus concentration on the technological and physical-mechanical characteristics, thermal resistance and fire hazard indices of foams and to develop fire-proof thermal insulation materials possessing high performance. 

Methods. Physical-mechanical properties and fire hazard indices of gas-filled polymers were determined according to current GOST. Thermal properties and composition of combustion products of foams have been studied with thermoanalytical complex DuPONT-9900 and chromatography-mass spectrometry.

Results and discussion. The concentration of phosphorus in the synthesis of rigid polyurethane foams with reduced flammability and high performance should exceed 2.1 % wt. The low-combustible urea foams have been obtained at a phosphorus concentration of 0.2–0.3 % wt. For the production of non-flammable, low-­flammable resin foams, the phosphorus concentration is 0.6–0.7 % wt. At the same time, organophosphorus flame retardants containing reactive groups are highly effective.

Conclusions. As a result of experimental studies the influence of phosphorus concentration and content of organophosphorus-containing flame retardants on physical-mechanical properties, thermal stability and fire hazard of foams based on reactive oligomers was revealed, the pouring foams with lowered fire hazard and high performance were developed.

About the Authors

V. A. Ushkov
Moscow State University of Civil Engineering (National Research University)
Russian Federation

Dr. Sci. (Eng.), Head of the Laboratory of Modern Composite Building Materials



A. V. Goryunova
Moscow State University of Civil Engineering (National Research University)
Russian Federation

Lecturer of the Department of Design of Buildings and Structures



M. E. Zolotarev
Moscow State University of Civil Engineering (National Research University)
Russian Federation

Postgraduate student of the Department of Construction Materials Science



M. V. Ushkov
Moscow State University of Civil Engineering (National Research University)
Russian Federation

Lecturer of the Department of Construction Materials Science



References

1. Valgin V.D. The domestic energy-saving technology of thermal insulation of building structures with the use of a new generation of foam plastic. Plastic masses. 2007; 10:44-48. (rus).

2. Klempner D. Polymer foams and foaming technology: Professiya / profession, ed. by A.M. Chebotary. Saint Petersburg, 2009; 600. (rus).

3. Kuleshov I.V., Thorner R.V. Thermal insulation of foamed polymers. Moscow, Stroyizdat Publ.,1987; 144. (rus).

4. Abdrakhmanova L.A., Mubarakshina L.F. Assessment of operation durability of reinforced carbamide foam plastic. Stroitel’nye materialy/Construction Materials. 2009; 8:38-39. (rus).

5. Evans D.A.K. Rigid polyurethane foam as a thermal insulating material for buildings with low energy consumption. Polymer materials. Products, equipment, technology. 2013; 3: 10-19. (rus).

6. Pankrushin A.A. Technological and economic feasibility of urea foams. Stroitelnye materialy/Construction Materials. 2004; 5:10-12. (rus).

7. Dementiev A.G., Tarakanova O.G. Structure and properties of the foam plastics. Khimiya/Chemistry. Moscow, 1983; 176. (rus).

8. Guryev V.V. Influence of structural features of heat insulation materials from gas-filled plastics on their mechanical properties. Promyshlennoye i grazhdanskoye stroitelstvo/Industrial and Civil Engineering. 2010; 12:19-23. (rus).

9. Kiselev I.Ya. Thermo-physical properties of foam plastics. Plasticheskie massy/Plastic masses. 2003; 6:10-12. (rus).

10. Ushkov V.A., Lalayan V.M., Sokoreva E.V. Spread of flame on the surface of construction polyfoams. Pozharovzryvobez­opasnost/Fire and explosion safety. 2013; 2:23-27. URL: https://www.elibrary.ru/item.asp?id=19435775 (rus).

11. Sokoreva E.V., Goryunova A.V., Ushkov V.A. Fire hazard of gas-filled polymers // Safety of the construction fund of Russia. Problems and Solutions. 2017; 1:48-55. URL: https://www.elibrary.ru/item.asp?id=30778543 (rus).

12. Baratov A.N., Korolchenko A.Y., Kravchuk G.N. et al. Fire and explosion safety of substances and materials and means for their extinguishing. Chemistry, Reference Publisher. In 2 Books: Book 2. Мoscow, 1990; 384. (rus).

13. Ushkov V.A., Sokoreva E.V., Slavin A.M., Orlova A.M. Thermostability and combustibility of building polyfoams on the basis of reactive oligomers. Building Materials. 2014; 1:28-32. URL: https://www.elibrary.ru/item.asp?id=17978029 (rus).

14. Konstantinova N.I., Vinogradov A.M., Bobkov A.S. Spreading smoldering in phenol-formaldehyde foams. Pozharnaya profilaktika/Fire prevention : Collection of scientific papers. Moscow, VNIIPO, 1986; 93-103. (rus).

15. Ushkov V.A., Brujаko M.G., Sokoreva E.V., Lalayan V.M. Combustibility of phosphorous-containing resol foam phenolplastics. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2012; 21(11):35-39. URL: https://www.elibrary.ru/item.asp?id=18642346 (rus).

16. Baratov A.N., Andriyanov R.A., Korolchenko A.Y., Mikhailov D.S. et al. Fire hazard of building materials / A.N. Baratov (ed.). Moscow, Stroyizdat Publ., 1988; 179-277. (rus).

17. Mikhailin Y.A. Heat-, thermo-, and fire hazard of polymeric material. Saint Petersburg, Nauchnyye osnovy i tekhno­logii Publ., 2011; 416. (rus).

18. Zhao Q., Chen C., Fan R., Yuan Y., Xing Y., Ma X. Halogen-free flame-retardant rigid polyurethane foam with a nitrogen–phosphorus flame retardant. Journal of Fire Sciences. 2017; 35(2):99-117. DOI: 10.1177/0734904116684363

19. Gomez-Fernandez S., Ugarte L., Pena-Rodriguez C., Corcuera M.A., Eceiza A. The effect of phosphorus containing polyol and layered double hydroxides on the properties of a castor oil based flexible polyurethane foam. Polymer Degradation and Stability. 2016; 132:41-51. DOI: 10.1016/j.polymdegradstab.2016.03.036

20. Savas L.A., Deniz T.K., Tayfun U., Dogan M. Effect of microcapsulated red phosphorus on flame retardant, thermal and mechanical properties of thermoplastic polyurethane composites filled with huntite&hydromagnesite mineral. Polymer Degradation and Stability. 2017; 135:121-129. DOI: 10.1016/j.polymdegradstab.2016.12.001

21. Chen F., Sun W., Jiang J., Hu S., Shen Q., Zhang L.-M. Preparation and flame retardant properties of ceramic polyurethane foam composite. Journal Wuhan University Technology. 2016; 38(4):1-7.

22. Yang S., Liu X., Tang G., Long H., Wang B., Zhang H. et al. Fire retarded polyurethane foam composites based on steel slag/ammonium polyphosphate system: A novel strategy for utilization of metallurgical solid waste. Polymer Advanced Technology. 2022; 33(1):452-463. DOI: 10.1002/pat.5529

23. Sun C., Dong Z., Dong Y., Lu S. et al. Effect of flame retardant dimethylmethylphosphonate on properties of rigid polyurethane foam. Plastic Science and Technology. 2017; 45(3):90-94.

24. Chan Y.Y., Ma C., Zhou F., Hu Y., Schartel B. A liquid phosphorus flame retardant combined with expandable graphite or melamine in flexible polyurethane foam. Polymer Advanced Technology. 2022; 33(1):326-339. DOI: 10.1002/pat.5519

25. Zieleniewska M., Ryszkowska J., Bryskiewicz A., Auguszik M., Szczepkowski L., Swiderski A., Wrzesniewska-­Tosik K. The structure and properties of viscoelastic polyurethane foams with FyrolTM and keratin fibers. Polymery. 2017; 62(2):127-135. DOI: 10.14314/polimery.2017.127

26. Yang S., Zhang B., Liu M., Yang Y., Xinliang L., Depeng C. et al. Fire performance of piperazine phytate modified rigid polyurethane foam composites. Polymer Advanced Technology. 2021; 32(11):4531-4546. DOI: 10.1002/pat.5454

27. Chmiel Evelina, Lubczak Jacek. Oligoetherols and polyurethane foams obtained from melamine diborate. Journal of Polymer Research. 2017; 24(6):1-12. DOI: 10.1007/s10965-017-1252-1

28. Ushkov V.A., Sokoreva E.V., Gorynova A.V., Demyanenko S.A. Fire hazard of phosphorus-containing rigid polyurethane foams. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2018; 13(12):1524-1532. DOI: 10.22227/1997-0935.2018.12.1524-1532 (rus).

29. Sazonov O.O., Nazimov A.A., Archipov N.A., Saifieva A.R., Kapralova V.M., Sudar’ N.T. Study of polyurethanes based on phosphoroganic polyols modified with phthalic anhydride. Vestnik Kazanskogo Technologicheskogo Universiteta/Bulletin of Kazan University of Technologies. 2021; 24(11):66-69. URL: https://www.elibrary.ru/item.asp?id=47231256 (rus).

30. Kobelev A.A., Kruglov E.D., Aseeva R.M., Serpov B.B. Hybrid polyurethane-inorganic thermal insulation: fire hazard and thermal-oxidative degradation. Vse materialy. Encyclopedicheskii spravochnik. 2021; 8:24-33. DOI: 10.31044/1994-6260-2021-0-8-24-33 (rus).

31. Ushkov V.A., Bruyako M.G., Grigor’eva G.S., Sokoreva E.V. Thermostability and combustibility of building polyfoams on the basis of reactive oligomers. Scientific and Technical Volga region Bulletin. 2012; 5:344-348. URL: https://www.elibrary.ru/item.asp?id=17978029 (rus.).

32. Ma Yu-feng, Wang Chun-peng, Chu Fuxiang. Effect of molybdenum trioxide on flame retardant properties of phenolic foams halogen-free system. Chemistry and Industry offorest Products. 2016; 36(3):73-80.

33. Liu Juan, Chen Ri-Qing, Xu Yu-Zhi, Wang Chun-Peng, Chu F.-X. Resorcinol in high solid phenol-formaldehyde resins for foams production. Journal Applied Polymer Science. 2017; 134(22). DOI: 10.1002/app.44881


Review

For citations:


Ushkov V.A., Goryunova A.V., Zolotarev M.E., Ushkov M.V. Influence of phosphorus-containing flame retardants on fire hazard indices of gas-filled polymers based on reactive oligomers. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2023;32(3):41-53. (In Russ.) https://doi.org/10.22227/0869-7493.2023.32.03.41-53

Views: 280


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)