Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search

Explosion hazard of whey powder mixed with air

https://doi.org/10.22227/0869-7493.2023.32.01.51-56

Abstract

Introduction. In many countries, regulations consider combustible dust with a particle size of more than 500 μm as dispersed material non-explosive if mixed with air. The explosiveness of mixtures of air and some substance arouses researchers’ interest. In particular, the explosiveness of whey powder specimens (hereinafter referred to as whey powder) with an average particle size of 41, 162 and 750 μm, was identified in the process of their testing in a 1 m3 chamber. The task is to find out the maximum particle size of whey powder dcr using the earlier developed procedure and to demonstrate its failure to conform to the rule specified above.

Method to process experimental data. Continuous functions F of particle size distribution d were constructed for three whey powder specimens having the following values of the lower explosive limit (LEL1 = 250 g/m3, LEL2 = 250 g/m3 and LEL3 = 500 g/m3, respectively). Resulting functions F1(d), F2(d) and F3(d) were presented using Rosin – Rammler distributions that filled the gaps between the discrete data obtained as a result of the sieve analysis.

dcr evaluation. We used information about the first and third whey powder specimens in compliance with the well-known procedure (Poletaev, 2014). dcr values were identified using equation F1(dcr)/F3(dcr) = LEL3/LEL1. Having solved the equation, we found that dcr = 750 μm.

Discussion. The obtained evaluation of dcr is much higher than the limit value of the parameter proposed in the regulations. This evaluation is of objective origin, and it cannot be explained by the grinding of large particles during the spraying process. The latter statement is supported by a characteristic decrease in the explosibility index of whey powder and an increase in the average particle size (for explosive fractions) of the three specimens in question.

Conclusions. The maximum particle size of the explosive whey fraction is about 750 µm.

About the Author

N. L. Poletaev
All-Russian Research Institute for Fire Protection of Minis­­­­try of Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters, VNIIPO, 12, Balashikha, Moscow Region, 143903, Russian Federation
Russian Federation

Nikolay L. POLETAEV, Dr. Sci. (Eng.), Leading Researcher, All-Russian Research Institute for Fire Protection of Minis­­­­try of Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters, VNIIPO, 12, Balashikha, Moscow Region, 143903, Russian Federation; ID RISC: 1093620



References

1. Di Benedetto A., Russo P., Amyotte P., Marchand N.

2. Modelling the effect of particle size on dust explosions. Chemical Engineering Science. 2010; 65(2):772-779. DOI: 10.1016/j.ces.2009.09.029

3. Ichinose K., Mogi T., Dobashi R. Effects of the particle size and agglomeration on the minimum explosible concentration and flame propagation velocity in dust clouds. Combustion, Explosion, and Shock Waves. 2020; 56(4):421-426. DOI: 10.1134/s001050822004005x

4. Poletaev N.L. Experiment-calculated estimating of the maximum particle size of explosive monodisperse dust-air mixture. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2014; 23(9):15-26 (rus).

5. Poletaev N.L. Estimating the maximum size of explosive iron sulfide particles. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2022; 31(3):

6. -11. DOI: 10.22227/0869-7493.2022.31.03.5-11 (rus).

7. Soundararajan R., Amyotte P.R., Pegg M.J. Explosibility hazard of iron sulphide dusts as a function of particle size. Journal of Hazardous Materials. 1996; 51(1-3): 225-239. DOI: 10.1016/s0304-3894(96)01825-0

8. Poletaev N.L. Explosibility of nuclear graphite measured in a 1 m3 chamber. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2022; 31(2):15-21. DOI: 10.22227/0869-7493.2022.31.02.15-21 (rus).

9. Graphite dust deflagration: A review of international data with particular reference to the decommissioning of graphite moderated reactors. EPRI, Palo Alto, CA, 2007; 1014797.

10. Poletaev N.L., Korolchenko A.Y. A now on the relationship between the lower explosiblity limit of dust and particle size. Proceedings of the Joint Meeting of the Russian and Japanese Sections of the Combustion Institute. Chernogolovka, Moscow Region, October 1993. Pp. 116–117.

11. Scholl E.W., Reeh D., Wiemann W. et al. Brenn – und Explosions – Kenngrossen von Stauben. SFT-Report.

12. ; 2-79:100. (ger).

13. Kouzov P.A. Fundamentals of the analysis of the disperse composition of industrial dusts and crushed materials. 3th ed. Leningrad, Himiya Publ., 1987; 264.

14. Selle Н., Zehr J. Beurteilung der Experimente Werte für die untere Zündgrenze von Staub. Luft-Gemischen mit Hijfe Thermochemischer Berechnungen. Staub und Reinhalt Luft. 1954; 38:583. (ger).

15. Hertzberg M., Cashdollar K.L. Introduction to dust explosions. The Industrial dust explosions / ed. K.L. Cashdollar, M. Henzberg. ASTM Special Technical Publication 958. Philadelphia, ASTM, 1987; 5-32.

16. Altwal J.M., Véchot L.N. Experimental study of the influence of particle size on Minimum Explosible Concentration of sulfur dust. Journal of Loss Prevention in the Process Industries. 2021; 71:104507. DOI: 10.1016/j.jlp.2021.104507

17. Bagaria P., Zhang J., Mashuga C. Effect of dust dispersion on particle breakage and size distribution in the minimum ignition energy apparatus. Journal of Loss Prevention in the Process Industries. 2017. DOI: 10.1016/j.jlp.2017.07.001

18. Sanchirico R., Di Sarli V., Russo P., Di Benedetto A. Effect of the nozzle type on the integrity of dust particles in standard explosion tests. Powder Technology. 2015; 279:203-208. DOI: 10.1016/j.powtec.2015.04.003

19. Bagaria P., Zhang J., Yang E., Dastidar A., Mashuga C. Effect of dust dispersion on particle integrity and explosion hazards. Journal of Loss Prevention in the Process Industries. 2016; 44:42-432. DOI: 10.1016/j.jlp.2016.11.001

20. Bagaria P., Li Q., Dastidar A., Mashuga C. Classification of particle breakage due to dust dispersion. Powder Technology. 2018. DOI: 10.1016/j.powtec.2018.09.089

21. Bagaria P., Hall B., Dastidar A., Mashuga C. Effect of particle size reduction due to dust dispersion on minimum ignition energy (MIE). Powder Technology. 2019; 356:304-309. DOI: 10.1016/j.powtec.2019.08.030

22. Miller J., Mulligan P., Johnson C.E. Comminution of pulverized Pittsburgh coal during ASTM E1226-12a dust combustibility testing. Powder Technology. 2020; 375:2-32. DOI: 10.1016/j.powtec.2020.07.059

23. Poletaev N.L. Particle size influence on the aluminum combustion dynamics in 1-m3 chamber. Pozharo-vzryvobezopasnost/Fire and Explosion Safety. 2022; 31(5):6-13. DOI: 10.22227/0869-7493.2022.31.05.6-13 (rus).


Review

For citations:


Poletaev N.L. Explosion hazard of whey powder mixed with air. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2023;32(1):51-56. (In Russ.) https://doi.org/10.22227/0869-7493.2023.32.01.51-56

Views: 513


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)